Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
|
rpcnne0 |
|- ( B e. RR+ -> ( B e. CC /\ B =/= 0 ) ) |
3 |
|
divcan2 |
|- ( ( A e. CC /\ B e. CC /\ B =/= 0 ) -> ( B x. ( A / B ) ) = A ) |
4 |
3
|
3expb |
|- ( ( A e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( B x. ( A / B ) ) = A ) |
5 |
1 2 4
|
syl2an |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( A / B ) ) = A ) |
6 |
5
|
oveq1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( A / B ) ) - ( B x. ( |_ ` ( A / B ) ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
7 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
8 |
7
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
9 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
10 |
9
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. CC ) |
11 |
|
refldivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
12 |
11
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
13 |
8 10 12
|
subdid |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) = ( ( B x. ( A / B ) ) - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
14 |
|
modval |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
15 |
6 13 14
|
3eqtr4rd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) ) |
16 |
|
fraclt1 |
|- ( ( A / B ) e. RR -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
17 |
9 16
|
syl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < 1 ) |
18 |
|
divid |
|- ( ( B e. CC /\ B =/= 0 ) -> ( B / B ) = 1 ) |
19 |
2 18
|
syl |
|- ( B e. RR+ -> ( B / B ) = 1 ) |
20 |
19
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B / B ) = 1 ) |
21 |
17 20
|
breqtrrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) |
22 |
9 11
|
resubcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) - ( |_ ` ( A / B ) ) ) e. RR ) |
23 |
|
rpre |
|- ( B e. RR+ -> B e. RR ) |
24 |
23
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. RR ) |
25 |
|
rpregt0 |
|- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
26 |
25
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B e. RR /\ 0 < B ) ) |
27 |
|
ltmuldiv2 |
|- ( ( ( ( A / B ) - ( |_ ` ( A / B ) ) ) e. RR /\ B e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B <-> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) ) |
28 |
22 24 26 27
|
syl3anc |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B <-> ( ( A / B ) - ( |_ ` ( A / B ) ) ) < ( B / B ) ) ) |
29 |
21 28
|
mpbird |
|- ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( ( A / B ) - ( |_ ` ( A / B ) ) ) ) < B ) |
30 |
15 29
|
eqbrtrd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) < B ) |