Description: Two nonnegative integers less than the modulus are equal iff they are equal modulo the modulus. (Contributed by AV, 14-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | modlteq | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( I mod N ) = ( J mod N ) <-> I = J ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zmodidfzoimp | |- ( I e. ( 0 ..^ N ) -> ( I mod N ) = I ) |
|
2 | zmodidfzoimp | |- ( J e. ( 0 ..^ N ) -> ( J mod N ) = J ) |
|
3 | 1 2 | eqeqan12d | |- ( ( I e. ( 0 ..^ N ) /\ J e. ( 0 ..^ N ) ) -> ( ( I mod N ) = ( J mod N ) <-> I = J ) ) |