Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) |
2 |
|
1red |
|- ( ( A e. RR /\ M e. RR+ ) -> 1 e. RR ) |
3 |
|
simpr |
|- ( ( A e. RR /\ M e. RR+ ) -> M e. RR+ ) |
4 |
1 2 3
|
3jca |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
5 |
4
|
3adant3 |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( A e. RR /\ 1 e. RR /\ M e. RR+ ) ) |
6 |
|
modaddmod |
|- ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
7 |
5 6
|
syl |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) |
8 |
|
modcl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
9 |
|
peano2re |
|- ( ( A mod M ) e. RR -> ( ( A mod M ) + 1 ) e. RR ) |
10 |
8 9
|
syl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) + 1 ) e. RR ) |
11 |
10 3
|
jca |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) ) |
12 |
11
|
3adant3 |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) ) |
13 |
|
0red |
|- ( ( A e. RR /\ M e. RR+ ) -> 0 e. RR ) |
14 |
|
modge0 |
|- ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( A mod M ) ) |
15 |
8
|
lep1d |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) <_ ( ( A mod M ) + 1 ) ) |
16 |
13 8 10 14 15
|
letrd |
|- ( ( A e. RR /\ M e. RR+ ) -> 0 <_ ( ( A mod M ) + 1 ) ) |
17 |
16
|
3adant3 |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> 0 <_ ( ( A mod M ) + 1 ) ) |
18 |
|
rpre |
|- ( M e. RR+ -> M e. RR ) |
19 |
18
|
adantl |
|- ( ( A e. RR /\ M e. RR+ ) -> M e. RR ) |
20 |
8 2 19
|
ltaddsubd |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) < M <-> ( A mod M ) < ( M - 1 ) ) ) |
21 |
20
|
biimp3ar |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( A mod M ) + 1 ) < M ) |
22 |
|
modid |
|- ( ( ( ( ( A mod M ) + 1 ) e. RR /\ M e. RR+ ) /\ ( 0 <_ ( ( A mod M ) + 1 ) /\ ( ( A mod M ) + 1 ) < M ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) |
23 |
12 17 21 22
|
syl12anc |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) |
24 |
7 23
|
eqtr3d |
|- ( ( A e. RR /\ M e. RR+ /\ ( A mod M ) < ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = ( ( A mod M ) + 1 ) ) |