Step |
Hyp |
Ref |
Expression |
1 |
|
eluzelre |
|- ( N e. ( ZZ>= ` 2 ) -> N e. RR ) |
2 |
|
eluz2gt1 |
|- ( N e. ( ZZ>= ` 2 ) -> 1 < N ) |
3 |
2
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 < N ) |
4 |
|
1mod |
|- ( ( N e. RR /\ 1 < N ) -> ( 1 mod N ) = 1 ) |
5 |
4
|
eqcomd |
|- ( ( N e. RR /\ 1 < N ) -> 1 = ( 1 mod N ) ) |
6 |
1 3 5
|
syl2an2r |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 = ( 1 mod N ) ) |
7 |
6
|
eqeq2d |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = 1 <-> ( A mod N ) = ( 1 mod N ) ) ) |
8 |
|
eluz2nn |
|- ( N e. ( ZZ>= ` 2 ) -> N e. NN ) |
9 |
8
|
adantr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> N e. NN ) |
10 |
|
simpr |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> A e. ZZ ) |
11 |
|
1zzd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> 1 e. ZZ ) |
12 |
|
moddvds |
|- ( ( N e. NN /\ A e. ZZ /\ 1 e. ZZ ) -> ( ( A mod N ) = ( 1 mod N ) <-> N || ( A - 1 ) ) ) |
13 |
9 10 11 12
|
syl3anc |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = ( 1 mod N ) <-> N || ( A - 1 ) ) ) |
14 |
7 13
|
bitrd |
|- ( ( N e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod N ) = 1 <-> N || ( A - 1 ) ) ) |