| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1re |  |-  1 e. RR | 
						
							| 2 |  | modaddmod |  |-  ( ( A e. RR /\ 1 e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) | 
						
							| 3 | 1 2 | mp3an2 |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( A + 1 ) mod M ) ) | 
						
							| 4 | 3 | eqcomd |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A + 1 ) mod M ) = ( ( ( A mod M ) + 1 ) mod M ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = ( ( ( A mod M ) + 1 ) mod M ) ) | 
						
							| 6 |  | oveq1 |  |-  ( ( A mod M ) = ( M - 1 ) -> ( ( A mod M ) + 1 ) = ( ( M - 1 ) + 1 ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( A mod M ) = ( M - 1 ) -> ( ( ( A mod M ) + 1 ) mod M ) = ( ( ( M - 1 ) + 1 ) mod M ) ) | 
						
							| 8 |  | rpcn |  |-  ( M e. RR+ -> M e. CC ) | 
						
							| 9 |  | npcan1 |  |-  ( M e. CC -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 10 | 8 9 | syl |  |-  ( M e. RR+ -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 11 | 10 | oveq1d |  |-  ( M e. RR+ -> ( ( ( M - 1 ) + 1 ) mod M ) = ( M mod M ) ) | 
						
							| 12 |  | modid0 |  |-  ( M e. RR+ -> ( M mod M ) = 0 ) | 
						
							| 13 | 11 12 | eqtrd |  |-  ( M e. RR+ -> ( ( ( M - 1 ) + 1 ) mod M ) = 0 ) | 
						
							| 14 | 13 | adantl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( ( M - 1 ) + 1 ) mod M ) = 0 ) | 
						
							| 15 | 7 14 | sylan9eqr |  |-  ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( ( A mod M ) + 1 ) mod M ) = 0 ) | 
						
							| 16 | 5 15 | eqtrd |  |-  ( ( ( A e. RR /\ M e. RR+ ) /\ ( A mod M ) = ( M - 1 ) ) -> ( ( A + 1 ) mod M ) = 0 ) | 
						
							| 17 | 16 | ex |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) = ( M - 1 ) -> ( ( A + 1 ) mod M ) = 0 ) ) |