| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modval |
|- ( ( A e. RR /\ D e. RR+ ) -> ( A mod D ) = ( A - ( D x. ( |_ ` ( A / D ) ) ) ) ) |
| 2 |
|
modval |
|- ( ( B e. RR /\ D e. RR+ ) -> ( B mod D ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) |
| 3 |
1 2
|
eqeqan12d |
|- ( ( ( A e. RR /\ D e. RR+ ) /\ ( B e. RR /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 4 |
3
|
anandirs |
|- ( ( ( A e. RR /\ B e. RR ) /\ D e. RR+ ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 5 |
4
|
adantrl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) <-> ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) ) ) |
| 6 |
|
oveq1 |
|- ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) = ( B - ( D x. ( |_ ` ( B / D ) ) ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
| 7 |
5 6
|
biimtrdi |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) ) |
| 8 |
|
rpcn |
|- ( D e. RR+ -> D e. CC ) |
| 9 |
8
|
ad2antll |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. CC ) |
| 10 |
|
zcn |
|- ( C e. ZZ -> C e. CC ) |
| 11 |
10
|
ad2antrl |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. CC ) |
| 12 |
|
rerpdivcl |
|- ( ( A e. RR /\ D e. RR+ ) -> ( A / D ) e. RR ) |
| 13 |
12
|
flcld |
|- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 14 |
13
|
zcnd |
|- ( ( A e. RR /\ D e. RR+ ) -> ( |_ ` ( A / D ) ) e. CC ) |
| 15 |
14
|
adantrl |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. CC ) |
| 16 |
9 11 15
|
mulassd |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( A / D ) ) ) = ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) |
| 17 |
9 11 15
|
mul32d |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( A / D ) ) ) = ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) |
| 18 |
16 17
|
eqtr3d |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) = ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) |
| 19 |
18
|
oveq2d |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A x. C ) - ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) ) |
| 20 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 21 |
20
|
adantr |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> A e. CC ) |
| 22 |
8
|
adantl |
|- ( ( A e. RR /\ D e. RR+ ) -> D e. CC ) |
| 23 |
22 14
|
mulcld |
|- ( ( A e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 24 |
23
|
adantrl |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( A / D ) ) ) e. CC ) |
| 25 |
21 24 11
|
subdird |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( A x. C ) - ( ( D x. ( |_ ` ( A / D ) ) ) x. C ) ) ) |
| 26 |
19 25
|
eqtr4d |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) ) |
| 27 |
26
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) ) |
| 28 |
8
|
ad2antll |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. CC ) |
| 29 |
10
|
ad2antrl |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. CC ) |
| 30 |
|
rerpdivcl |
|- ( ( B e. RR /\ D e. RR+ ) -> ( B / D ) e. RR ) |
| 31 |
30
|
flcld |
|- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 32 |
31
|
zcnd |
|- ( ( B e. RR /\ D e. RR+ ) -> ( |_ ` ( B / D ) ) e. CC ) |
| 33 |
32
|
adantrl |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. CC ) |
| 34 |
28 29 33
|
mulassd |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( B / D ) ) ) = ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) |
| 35 |
28 29 33
|
mul32d |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( D x. C ) x. ( |_ ` ( B / D ) ) ) = ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) |
| 36 |
34 35
|
eqtr3d |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) = ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) |
| 37 |
36
|
oveq2d |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B x. C ) - ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) ) |
| 38 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 39 |
38
|
adantr |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> B e. CC ) |
| 40 |
8
|
adantl |
|- ( ( B e. RR /\ D e. RR+ ) -> D e. CC ) |
| 41 |
40 32
|
mulcld |
|- ( ( B e. RR /\ D e. RR+ ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 42 |
41
|
adantrl |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( D x. ( |_ ` ( B / D ) ) ) e. CC ) |
| 43 |
39 42 29
|
subdird |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) = ( ( B x. C ) - ( ( D x. ( |_ ` ( B / D ) ) ) x. C ) ) ) |
| 44 |
37 43
|
eqtr4d |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
| 45 |
44
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) |
| 46 |
27 45
|
eqeq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) <-> ( ( A - ( D x. ( |_ ` ( A / D ) ) ) ) x. C ) = ( ( B - ( D x. ( |_ ` ( B / D ) ) ) ) x. C ) ) ) |
| 47 |
7 46
|
sylibrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) ) ) |
| 48 |
|
oveq1 |
|- ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) ) |
| 49 |
|
zre |
|- ( C e. ZZ -> C e. RR ) |
| 50 |
|
remulcl |
|- ( ( A e. RR /\ C e. RR ) -> ( A x. C ) e. RR ) |
| 51 |
49 50
|
sylan2 |
|- ( ( A e. RR /\ C e. ZZ ) -> ( A x. C ) e. RR ) |
| 52 |
51
|
adantrr |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( A x. C ) e. RR ) |
| 53 |
|
simprr |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. RR+ ) |
| 54 |
|
simprl |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. ZZ ) |
| 55 |
13
|
adantrl |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( A / D ) ) e. ZZ ) |
| 56 |
54 55
|
zmulcld |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( C x. ( |_ ` ( A / D ) ) ) e. ZZ ) |
| 57 |
|
modcyc2 |
|- ( ( ( A x. C ) e. RR /\ D e. RR+ /\ ( C x. ( |_ ` ( A / D ) ) ) e. ZZ ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
| 58 |
52 53 56 57
|
syl3anc |
|- ( ( A e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
| 59 |
58
|
adantlr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( A x. C ) mod D ) ) |
| 60 |
|
remulcl |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) e. RR ) |
| 61 |
49 60
|
sylan2 |
|- ( ( B e. RR /\ C e. ZZ ) -> ( B x. C ) e. RR ) |
| 62 |
61
|
adantrr |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( B x. C ) e. RR ) |
| 63 |
|
simprr |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> D e. RR+ ) |
| 64 |
|
simprl |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> C e. ZZ ) |
| 65 |
31
|
adantrl |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( |_ ` ( B / D ) ) e. ZZ ) |
| 66 |
64 65
|
zmulcld |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( C x. ( |_ ` ( B / D ) ) ) e. ZZ ) |
| 67 |
|
modcyc2 |
|- ( ( ( B x. C ) e. RR /\ D e. RR+ /\ ( C x. ( |_ ` ( B / D ) ) ) e. ZZ ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
| 68 |
62 63 66 67
|
syl3anc |
|- ( ( B e. RR /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
| 69 |
68
|
adantll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) = ( ( B x. C ) mod D ) ) |
| 70 |
59 69
|
eqeq12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) mod D ) = ( ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) mod D ) <-> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 71 |
48 70
|
imbitrid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( ( A x. C ) - ( D x. ( C x. ( |_ ` ( A / D ) ) ) ) ) = ( ( B x. C ) - ( D x. ( C x. ( |_ ` ( B / D ) ) ) ) ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 72 |
47 71
|
syld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) ) -> ( ( A mod D ) = ( B mod D ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) ) |
| 73 |
72
|
3impia |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ D e. RR+ ) /\ ( A mod D ) = ( B mod D ) ) -> ( ( A x. C ) mod D ) = ( ( B x. C ) mod D ) ) |