| Step |
Hyp |
Ref |
Expression |
| 1 |
|
modmul12d.1 |
|- ( ph -> A e. ZZ ) |
| 2 |
|
modmul12d.2 |
|- ( ph -> B e. ZZ ) |
| 3 |
|
modmul12d.3 |
|- ( ph -> C e. ZZ ) |
| 4 |
|
modmul12d.4 |
|- ( ph -> D e. ZZ ) |
| 5 |
|
modmul12d.5 |
|- ( ph -> E e. RR+ ) |
| 6 |
|
modmul12d.6 |
|- ( ph -> ( A mod E ) = ( B mod E ) ) |
| 7 |
|
modmul12d.7 |
|- ( ph -> ( C mod E ) = ( D mod E ) ) |
| 8 |
1
|
zred |
|- ( ph -> A e. RR ) |
| 9 |
2
|
zred |
|- ( ph -> B e. RR ) |
| 10 |
|
modmul1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
| 11 |
8 9 3 5 6 10
|
syl221anc |
|- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
| 12 |
2
|
zcnd |
|- ( ph -> B e. CC ) |
| 13 |
3
|
zcnd |
|- ( ph -> C e. CC ) |
| 14 |
12 13
|
mulcomd |
|- ( ph -> ( B x. C ) = ( C x. B ) ) |
| 15 |
14
|
oveq1d |
|- ( ph -> ( ( B x. C ) mod E ) = ( ( C x. B ) mod E ) ) |
| 16 |
3
|
zred |
|- ( ph -> C e. RR ) |
| 17 |
4
|
zred |
|- ( ph -> D e. RR ) |
| 18 |
|
modmul1 |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. ZZ /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
| 19 |
16 17 2 5 7 18
|
syl221anc |
|- ( ph -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
| 20 |
4
|
zcnd |
|- ( ph -> D e. CC ) |
| 21 |
20 12
|
mulcomd |
|- ( ph -> ( D x. B ) = ( B x. D ) ) |
| 22 |
21
|
oveq1d |
|- ( ph -> ( ( D x. B ) mod E ) = ( ( B x. D ) mod E ) ) |
| 23 |
15 19 22
|
3eqtrd |
|- ( ph -> ( ( B x. C ) mod E ) = ( ( B x. D ) mod E ) ) |
| 24 |
11 23
|
eqtrd |
|- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. D ) mod E ) ) |