Step |
Hyp |
Ref |
Expression |
1 |
|
modmul12d.1 |
|- ( ph -> A e. ZZ ) |
2 |
|
modmul12d.2 |
|- ( ph -> B e. ZZ ) |
3 |
|
modmul12d.3 |
|- ( ph -> C e. ZZ ) |
4 |
|
modmul12d.4 |
|- ( ph -> D e. ZZ ) |
5 |
|
modmul12d.5 |
|- ( ph -> E e. RR+ ) |
6 |
|
modmul12d.6 |
|- ( ph -> ( A mod E ) = ( B mod E ) ) |
7 |
|
modmul12d.7 |
|- ( ph -> ( C mod E ) = ( D mod E ) ) |
8 |
1
|
zred |
|- ( ph -> A e. RR ) |
9 |
2
|
zred |
|- ( ph -> B e. RR ) |
10 |
|
modmul1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. ZZ /\ E e. RR+ ) /\ ( A mod E ) = ( B mod E ) ) -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
11 |
8 9 3 5 6 10
|
syl221anc |
|- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. C ) mod E ) ) |
12 |
2
|
zcnd |
|- ( ph -> B e. CC ) |
13 |
3
|
zcnd |
|- ( ph -> C e. CC ) |
14 |
12 13
|
mulcomd |
|- ( ph -> ( B x. C ) = ( C x. B ) ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( B x. C ) mod E ) = ( ( C x. B ) mod E ) ) |
16 |
3
|
zred |
|- ( ph -> C e. RR ) |
17 |
4
|
zred |
|- ( ph -> D e. RR ) |
18 |
|
modmul1 |
|- ( ( ( C e. RR /\ D e. RR ) /\ ( B e. ZZ /\ E e. RR+ ) /\ ( C mod E ) = ( D mod E ) ) -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
19 |
16 17 2 5 7 18
|
syl221anc |
|- ( ph -> ( ( C x. B ) mod E ) = ( ( D x. B ) mod E ) ) |
20 |
4
|
zcnd |
|- ( ph -> D e. CC ) |
21 |
20 12
|
mulcomd |
|- ( ph -> ( D x. B ) = ( B x. D ) ) |
22 |
21
|
oveq1d |
|- ( ph -> ( ( D x. B ) mod E ) = ( ( B x. D ) mod E ) ) |
23 |
15 19 22
|
3eqtrd |
|- ( ph -> ( ( B x. C ) mod E ) = ( ( B x. D ) mod E ) ) |
24 |
11 23
|
eqtrd |
|- ( ph -> ( ( A x. C ) mod E ) = ( ( B x. D ) mod E ) ) |