| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( k = ( |_ ` ( A / M ) ) -> ( k x. M ) = ( ( |_ ` ( A / M ) ) x. M ) ) | 
						
							| 2 | 1 | oveq1d |  |-  ( k = ( |_ ` ( A / M ) ) -> ( ( k x. M ) + ( A mod M ) ) = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) | 
						
							| 3 | 2 | eqeq2d |  |-  ( k = ( |_ ` ( A / M ) ) -> ( A = ( ( k x. M ) + ( A mod M ) ) <-> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) ) | 
						
							| 4 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> A e. RR ) | 
						
							| 6 |  | rpre |  |-  ( M e. RR+ -> M e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> M e. RR ) | 
						
							| 8 |  | rpne0 |  |-  ( M e. RR+ -> M =/= 0 ) | 
						
							| 9 | 8 | adantl |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> M =/= 0 ) | 
						
							| 10 | 5 7 9 | redivcld |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> ( A / M ) e. RR ) | 
						
							| 11 | 10 | flcld |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> ( |_ ` ( A / M ) ) e. ZZ ) | 
						
							| 12 | 11 | 3adant2 |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( |_ ` ( A / M ) ) e. ZZ ) | 
						
							| 13 |  | flpmodeq |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) = A ) | 
						
							| 14 | 4 13 | sylan |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) = A ) | 
						
							| 15 | 14 | eqcomd |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) | 
						
							| 16 | 15 | 3adant2 |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> A = ( ( ( |_ ` ( A / M ) ) x. M ) + ( A mod M ) ) ) | 
						
							| 17 | 3 12 16 | rspcedvdw |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> E. k e. ZZ A = ( ( k x. M ) + ( A mod M ) ) ) | 
						
							| 18 |  | oveq2 |  |-  ( B = ( A mod M ) -> ( ( k x. M ) + B ) = ( ( k x. M ) + ( A mod M ) ) ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( B = ( A mod M ) -> ( A = ( ( k x. M ) + B ) <-> A = ( ( k x. M ) + ( A mod M ) ) ) ) | 
						
							| 20 | 19 | eqcoms |  |-  ( ( A mod M ) = B -> ( A = ( ( k x. M ) + B ) <-> A = ( ( k x. M ) + ( A mod M ) ) ) ) | 
						
							| 21 | 20 | rexbidv |  |-  ( ( A mod M ) = B -> ( E. k e. ZZ A = ( ( k x. M ) + B ) <-> E. k e. ZZ A = ( ( k x. M ) + ( A mod M ) ) ) ) | 
						
							| 22 | 17 21 | syl5ibrcom |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) | 
						
							| 23 |  | oveq1 |  |-  ( A = ( ( k x. M ) + B ) -> ( A mod M ) = ( ( ( k x. M ) + B ) mod M ) ) | 
						
							| 24 |  | simpr |  |-  ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> k e. ZZ ) | 
						
							| 25 |  | simpl3 |  |-  ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> M e. RR+ ) | 
						
							| 26 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> B e. ( 0 [,) M ) ) | 
						
							| 27 |  | muladdmodid |  |-  ( ( k e. ZZ /\ M e. RR+ /\ B e. ( 0 [,) M ) ) -> ( ( ( k x. M ) + B ) mod M ) = B ) | 
						
							| 28 | 24 25 26 27 | syl3anc |  |-  ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) -> ( ( ( k x. M ) + B ) mod M ) = B ) | 
						
							| 29 | 23 28 | sylan9eqr |  |-  ( ( ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) /\ k e. ZZ ) /\ A = ( ( k x. M ) + B ) ) -> ( A mod M ) = B ) | 
						
							| 30 | 29 | rexlimdva2 |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( E. k e. ZZ A = ( ( k x. M ) + B ) -> ( A mod M ) = B ) ) | 
						
							| 31 | 22 30 | impbid |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |