| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( A e. ZZ -> A e. RR ) | 
						
							| 2 |  | modelico |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. ( 0 [,) M ) ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> ( A mod M ) e. ( 0 [,) M ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A mod M ) e. ( 0 [,) M ) ) | 
						
							| 5 |  | eleq1 |  |-  ( ( A mod M ) = B -> ( ( A mod M ) e. ( 0 [,) M ) <-> B e. ( 0 [,) M ) ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A mod M ) e. ( 0 [,) M ) <-> B e. ( 0 [,) M ) ) ) | 
						
							| 7 | 4 6 | mpbid |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> B e. ( 0 [,) M ) ) | 
						
							| 8 |  | simpll |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> A e. ZZ ) | 
						
							| 9 |  | simpr |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> B e. ( 0 [,) M ) ) | 
						
							| 10 |  | simpr |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> M e. RR+ ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> M e. RR+ ) | 
						
							| 12 |  | modmuladd |  |-  ( ( A e. ZZ /\ B e. ( 0 [,) M ) /\ M e. RR+ ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) | 
						
							| 13 | 8 9 11 12 | syl3anc |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> ( ( A mod M ) = B <-> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) | 
						
							| 14 | 13 | biimpd |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ B e. ( 0 [,) M ) ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) | 
						
							| 15 | 14 | impancom |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( B e. ( 0 [,) M ) -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) | 
						
							| 16 | 7 15 | mpd |  |-  ( ( ( A e. ZZ /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. k e. ZZ A = ( ( k x. M ) + B ) ) | 
						
							| 17 | 16 | ex |  |-  ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. ZZ A = ( ( k x. M ) + B ) ) ) |