Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> i e. ZZ ) |
2 |
1
|
adantr |
|- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> i e. ZZ ) |
3 |
|
eqcom |
|- ( A = ( ( i x. M ) + B ) <-> ( ( i x. M ) + B ) = A ) |
4 |
|
nn0cn |
|- ( A e. NN0 -> A e. CC ) |
5 |
4
|
adantr |
|- ( ( A e. NN0 /\ M e. RR+ ) -> A e. CC ) |
6 |
5
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> A e. CC ) |
7 |
|
nn0re |
|- ( A e. NN0 -> A e. RR ) |
8 |
|
modcl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
9 |
7 8
|
sylan |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( A mod M ) e. RR ) |
10 |
9
|
recnd |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( A mod M ) e. CC ) |
11 |
10
|
adantr |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A mod M ) e. CC ) |
12 |
|
eleq1 |
|- ( ( A mod M ) = B -> ( ( A mod M ) e. CC <-> B e. CC ) ) |
13 |
12
|
adantl |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A mod M ) e. CC <-> B e. CC ) ) |
14 |
11 13
|
mpbid |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> B e. CC ) |
15 |
14
|
adantr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> B e. CC ) |
16 |
|
zcn |
|- ( i e. ZZ -> i e. CC ) |
17 |
16
|
adantl |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> i e. CC ) |
18 |
|
rpcn |
|- ( M e. RR+ -> M e. CC ) |
19 |
18
|
adantl |
|- ( ( A e. NN0 /\ M e. RR+ ) -> M e. CC ) |
20 |
19
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> M e. CC ) |
21 |
17 20
|
mulcld |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( i x. M ) e. CC ) |
22 |
6 15 21
|
subadd2d |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) = ( i x. M ) <-> ( ( i x. M ) + B ) = A ) ) |
23 |
3 22
|
bitr4id |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) <-> ( A - B ) = ( i x. M ) ) ) |
24 |
4
|
ad2antrr |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> A e. CC ) |
25 |
24 14
|
subcld |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( A - B ) e. CC ) |
26 |
25
|
adantr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A - B ) e. CC ) |
27 |
|
rpcnne0 |
|- ( M e. RR+ -> ( M e. CC /\ M =/= 0 ) ) |
28 |
27
|
adantl |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( M e. CC /\ M =/= 0 ) ) |
29 |
28
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( M e. CC /\ M =/= 0 ) ) |
30 |
|
divmul3 |
|- ( ( ( A - B ) e. CC /\ i e. CC /\ ( M e. CC /\ M =/= 0 ) ) -> ( ( ( A - B ) / M ) = i <-> ( A - B ) = ( i x. M ) ) ) |
31 |
26 17 29 30
|
syl3anc |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( ( A - B ) / M ) = i <-> ( A - B ) = ( i x. M ) ) ) |
32 |
|
oveq2 |
|- ( B = ( A mod M ) -> ( A - B ) = ( A - ( A mod M ) ) ) |
33 |
32
|
oveq1d |
|- ( B = ( A mod M ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
34 |
33
|
eqcoms |
|- ( ( A mod M ) = B -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
35 |
34
|
adantl |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
36 |
35
|
adantr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) / M ) = ( ( A - ( A mod M ) ) / M ) ) |
37 |
|
moddiffl |
|- ( ( A e. RR /\ M e. RR+ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
38 |
7 37
|
sylan |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
39 |
38
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - ( A mod M ) ) / M ) = ( |_ ` ( A / M ) ) ) |
40 |
36 39
|
eqtrd |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( A - B ) / M ) = ( |_ ` ( A / M ) ) ) |
41 |
40
|
eqeq1d |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( ( A - B ) / M ) = i <-> ( |_ ` ( A / M ) ) = i ) ) |
42 |
23 31 41
|
3bitr2d |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) <-> ( |_ ` ( A / M ) ) = i ) ) |
43 |
|
nn0ge0 |
|- ( A e. NN0 -> 0 <_ A ) |
44 |
7 43
|
jca |
|- ( A e. NN0 -> ( A e. RR /\ 0 <_ A ) ) |
45 |
|
rpregt0 |
|- ( M e. RR+ -> ( M e. RR /\ 0 < M ) ) |
46 |
|
divge0 |
|- ( ( ( A e. RR /\ 0 <_ A ) /\ ( M e. RR /\ 0 < M ) ) -> 0 <_ ( A / M ) ) |
47 |
44 45 46
|
syl2an |
|- ( ( A e. NN0 /\ M e. RR+ ) -> 0 <_ ( A / M ) ) |
48 |
7
|
adantr |
|- ( ( A e. NN0 /\ M e. RR+ ) -> A e. RR ) |
49 |
|
rpre |
|- ( M e. RR+ -> M e. RR ) |
50 |
49
|
adantl |
|- ( ( A e. NN0 /\ M e. RR+ ) -> M e. RR ) |
51 |
|
rpne0 |
|- ( M e. RR+ -> M =/= 0 ) |
52 |
51
|
adantl |
|- ( ( A e. NN0 /\ M e. RR+ ) -> M =/= 0 ) |
53 |
48 50 52
|
redivcld |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( A / M ) e. RR ) |
54 |
|
0z |
|- 0 e. ZZ |
55 |
|
flge |
|- ( ( ( A / M ) e. RR /\ 0 e. ZZ ) -> ( 0 <_ ( A / M ) <-> 0 <_ ( |_ ` ( A / M ) ) ) ) |
56 |
53 54 55
|
sylancl |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( 0 <_ ( A / M ) <-> 0 <_ ( |_ ` ( A / M ) ) ) ) |
57 |
47 56
|
mpbid |
|- ( ( A e. NN0 /\ M e. RR+ ) -> 0 <_ ( |_ ` ( A / M ) ) ) |
58 |
|
breq2 |
|- ( ( |_ ` ( A / M ) ) = i -> ( 0 <_ ( |_ ` ( A / M ) ) <-> 0 <_ i ) ) |
59 |
57 58
|
syl5ibcom |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( |_ ` ( A / M ) ) = i -> 0 <_ i ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( ( |_ ` ( A / M ) ) = i -> 0 <_ i ) ) |
61 |
42 60
|
sylbid |
|- ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) -> ( A = ( ( i x. M ) + B ) -> 0 <_ i ) ) |
62 |
61
|
imp |
|- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> 0 <_ i ) |
63 |
|
elnn0z |
|- ( i e. NN0 <-> ( i e. ZZ /\ 0 <_ i ) ) |
64 |
2 62 63
|
sylanbrc |
|- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> i e. NN0 ) |
65 |
|
oveq1 |
|- ( k = i -> ( k x. M ) = ( i x. M ) ) |
66 |
65
|
oveq1d |
|- ( k = i -> ( ( k x. M ) + B ) = ( ( i x. M ) + B ) ) |
67 |
66
|
eqeq2d |
|- ( k = i -> ( A = ( ( k x. M ) + B ) <-> A = ( ( i x. M ) + B ) ) ) |
68 |
67
|
adantl |
|- ( ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) /\ k = i ) -> ( A = ( ( k x. M ) + B ) <-> A = ( ( i x. M ) + B ) ) ) |
69 |
|
simpr |
|- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> A = ( ( i x. M ) + B ) ) |
70 |
64 68 69
|
rspcedvd |
|- ( ( ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) /\ i e. ZZ ) /\ A = ( ( i x. M ) + B ) ) -> E. k e. NN0 A = ( ( k x. M ) + B ) ) |
71 |
|
nn0z |
|- ( A e. NN0 -> A e. ZZ ) |
72 |
|
modmuladdim |
|- ( ( A e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. i e. ZZ A = ( ( i x. M ) + B ) ) ) |
73 |
71 72
|
sylan |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. i e. ZZ A = ( ( i x. M ) + B ) ) ) |
74 |
73
|
imp |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. i e. ZZ A = ( ( i x. M ) + B ) ) |
75 |
70 74
|
r19.29a |
|- ( ( ( A e. NN0 /\ M e. RR+ ) /\ ( A mod M ) = B ) -> E. k e. NN0 A = ( ( k x. M ) + B ) ) |
76 |
75
|
ex |
|- ( ( A e. NN0 /\ M e. RR+ ) -> ( ( A mod M ) = B -> E. k e. NN0 A = ( ( k x. M ) + B ) ) ) |