| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modcl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 2 |  | simpl |  |-  ( ( A e. RR /\ M e. RR+ ) -> A e. RR ) | 
						
							| 3 | 1 2 | jca |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) | 
						
							| 4 | 3 | 3adant2 |  |-  ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) e. RR /\ A e. RR ) ) | 
						
							| 5 |  | 3simpc |  |-  ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( B e. ZZ /\ M e. RR+ ) ) | 
						
							| 6 |  | modabs2 |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) | 
						
							| 8 |  | modmul1 |  |-  ( ( ( ( A mod M ) e. RR /\ A e. RR ) /\ ( B e. ZZ /\ M e. RR+ ) /\ ( ( A mod M ) mod M ) = ( A mod M ) ) -> ( ( ( A mod M ) x. B ) mod M ) = ( ( A x. B ) mod M ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc |  |-  ( ( A e. RR /\ B e. ZZ /\ M e. RR+ ) -> ( ( ( A mod M ) x. B ) mod M ) = ( ( A x. B ) mod M ) ) |