| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 2 | 1 | 3ad2ant1 |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> A e. CC ) | 
						
							| 3 |  | simp2 |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> B e. RR ) | 
						
							| 4 |  | simp3 |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> M e. RR+ ) | 
						
							| 5 | 3 4 | modcld |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( B mod M ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( B mod M ) e. CC ) | 
						
							| 7 | 2 6 | mulcomd |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( A x. ( B mod M ) ) = ( ( B mod M ) x. A ) ) | 
						
							| 8 | 7 | oveq1d |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( ( A x. ( B mod M ) ) mod M ) = ( ( ( B mod M ) x. A ) mod M ) ) | 
						
							| 9 |  | modmulmod |  |-  ( ( B e. RR /\ A e. ZZ /\ M e. RR+ ) -> ( ( ( B mod M ) x. A ) mod M ) = ( ( B x. A ) mod M ) ) | 
						
							| 10 | 9 | 3com12 |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( ( ( B mod M ) x. A ) mod M ) = ( ( B x. A ) mod M ) ) | 
						
							| 11 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 12 | 1 11 | anim12ci |  |-  ( ( A e. ZZ /\ B e. RR ) -> ( B e. CC /\ A e. CC ) ) | 
						
							| 13 | 12 | 3adant3 |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( B e. CC /\ A e. CC ) ) | 
						
							| 14 |  | mulcom |  |-  ( ( B e. CC /\ A e. CC ) -> ( B x. A ) = ( A x. B ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( B x. A ) = ( A x. B ) ) | 
						
							| 16 | 15 | oveq1d |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( ( B x. A ) mod M ) = ( ( A x. B ) mod M ) ) | 
						
							| 17 | 8 10 16 | 3eqtrd |  |-  ( ( A e. ZZ /\ B e. RR /\ M e. RR+ ) -> ( ( A x. ( B mod M ) ) mod M ) = ( ( A x. B ) mod M ) ) |