| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 2 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 3 |  | remulcl |  |-  ( ( N e. RR /\ ( |_ ` A ) e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) | 
						
							| 5 | 4 | 3adant3 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) e. RR ) | 
						
							| 6 |  | remulcl |  |-  ( ( N e. RR /\ A e. RR ) -> ( N x. A ) e. RR ) | 
						
							| 7 | 1 6 | sylan |  |-  ( ( N e. NN /\ A e. RR ) -> ( N x. A ) e. RR ) | 
						
							| 8 |  | reflcl |  |-  ( ( N x. A ) e. RR -> ( |_ ` ( N x. A ) ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( N e. NN /\ A e. RR ) -> ( |_ ` ( N x. A ) ) e. RR ) | 
						
							| 10 | 9 | 3adant3 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( N x. A ) ) e. RR ) | 
						
							| 11 |  | nnmulcl |  |-  ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. NN ) | 
						
							| 12 | 11 | nnred |  |-  ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR ) | 
						
							| 13 | 12 | 3adant2 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) e. RR ) | 
						
							| 14 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 15 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 16 | 14 15 | jca |  |-  ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) | 
						
							| 17 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 18 |  | nnne0 |  |-  ( M e. NN -> M =/= 0 ) | 
						
							| 19 | 17 18 | jca |  |-  ( M e. NN -> ( M e. CC /\ M =/= 0 ) ) | 
						
							| 20 |  | mulne0 |  |-  ( ( ( N e. CC /\ N =/= 0 ) /\ ( M e. CC /\ M =/= 0 ) ) -> ( N x. M ) =/= 0 ) | 
						
							| 21 | 16 19 20 | syl2an |  |-  ( ( N e. NN /\ M e. NN ) -> ( N x. M ) =/= 0 ) | 
						
							| 22 | 21 | 3adant2 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) =/= 0 ) | 
						
							| 23 | 5 13 22 | redivcld |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR ) | 
						
							| 24 |  | reflcl |  |-  ( ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) | 
						
							| 26 | 13 25 | remulcld |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) e. RR ) | 
						
							| 27 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 28 |  | flmulnn0 |  |-  ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) | 
						
							| 29 | 27 28 | sylan |  |-  ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) | 
						
							| 30 | 29 | 3adant3 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) | 
						
							| 31 | 5 10 26 30 | lesub1dd |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) <_ ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 32 | 11 | nnrpd |  |-  ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR+ ) | 
						
							| 33 |  | modval |  |-  ( ( ( N x. ( |_ ` A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 34 | 5 32 33 | 3imp3i2an |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 35 |  | modval |  |-  ( ( ( |_ ` ( N x. A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 36 | 10 32 35 | 3imp3i2an |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 37 | 7 | 3adant3 |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. A ) e. RR ) | 
						
							| 38 |  | fldiv |  |-  ( ( ( N x. A ) e. RR /\ ( N x. M ) e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) | 
						
							| 39 | 37 11 38 | 3imp3i2an |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) | 
						
							| 40 |  | fldiv |  |-  ( ( A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) | 
						
							| 41 | 40 | 3adant3 |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) | 
						
							| 42 | 2 | recnd |  |-  ( A e. RR -> ( |_ ` A ) e. CC ) | 
						
							| 43 |  | divcan5 |  |-  ( ( ( |_ ` A ) e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) | 
						
							| 44 | 42 19 16 43 | syl3an |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) | 
						
							| 45 | 44 | fveq2d |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( |_ ` A ) / M ) ) ) | 
						
							| 46 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 47 |  | divcan5 |  |-  ( ( A e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) | 
						
							| 48 | 46 19 16 47 | syl3an |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) | 
						
							| 49 | 48 | fveq2d |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( A / M ) ) ) | 
						
							| 50 | 41 45 49 | 3eqtr4rd |  |-  ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) | 
						
							| 51 | 50 | 3comr |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) | 
						
							| 52 | 39 51 | eqtrd |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) = ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) | 
						
							| 54 | 53 | oveq2d |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 55 | 36 54 | eqtrd |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) | 
						
							| 56 | 31 34 55 | 3brtr4d |  |-  ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) <_ ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) ) |