Step |
Hyp |
Ref |
Expression |
1 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
2 |
|
reflcl |
|- ( A e. RR -> ( |_ ` A ) e. RR ) |
3 |
|
remulcl |
|- ( ( N e. RR /\ ( |_ ` A ) e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) |
4 |
1 2 3
|
syl2an |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) e. RR ) |
5 |
4
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) e. RR ) |
6 |
|
remulcl |
|- ( ( N e. RR /\ A e. RR ) -> ( N x. A ) e. RR ) |
7 |
1 6
|
sylan |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. A ) e. RR ) |
8 |
|
reflcl |
|- ( ( N x. A ) e. RR -> ( |_ ` ( N x. A ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( ( N e. NN /\ A e. RR ) -> ( |_ ` ( N x. A ) ) e. RR ) |
10 |
9
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( N x. A ) ) e. RR ) |
11 |
|
nnmulcl |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. NN ) |
12 |
11
|
nnred |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR ) |
13 |
12
|
3adant2 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) e. RR ) |
14 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
15 |
|
nnne0 |
|- ( N e. NN -> N =/= 0 ) |
16 |
14 15
|
jca |
|- ( N e. NN -> ( N e. CC /\ N =/= 0 ) ) |
17 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
18 |
|
nnne0 |
|- ( M e. NN -> M =/= 0 ) |
19 |
17 18
|
jca |
|- ( M e. NN -> ( M e. CC /\ M =/= 0 ) ) |
20 |
|
mulne0 |
|- ( ( ( N e. CC /\ N =/= 0 ) /\ ( M e. CC /\ M =/= 0 ) ) -> ( N x. M ) =/= 0 ) |
21 |
16 19 20
|
syl2an |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) =/= 0 ) |
22 |
21
|
3adant2 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. M ) =/= 0 ) |
23 |
5 13 22
|
redivcld |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR ) |
24 |
|
reflcl |
|- ( ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) e. RR -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) |
25 |
23 24
|
syl |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) e. RR ) |
26 |
13 25
|
remulcld |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) e. RR ) |
27 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
28 |
|
flmulnn0 |
|- ( ( N e. NN0 /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
29 |
27 28
|
sylan |
|- ( ( N e. NN /\ A e. RR ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
30 |
29
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. ( |_ ` A ) ) <_ ( |_ ` ( N x. A ) ) ) |
31 |
5 10 26 30
|
lesub1dd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) <_ ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
32 |
11
|
nnrpd |
|- ( ( N e. NN /\ M e. NN ) -> ( N x. M ) e. RR+ ) |
33 |
|
modval |
|- ( ( ( N x. ( |_ ` A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
34 |
5 32 33
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) = ( ( N x. ( |_ ` A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
35 |
|
modval |
|- ( ( ( |_ ` ( N x. A ) ) e. RR /\ ( N x. M ) e. RR+ ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) |
36 |
10 32 35
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) ) |
37 |
7
|
3adant3 |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( N x. A ) e. RR ) |
38 |
|
fldiv |
|- ( ( ( N x. A ) e. RR /\ ( N x. M ) e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) |
39 |
37 11 38
|
3imp3i2an |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) ) |
40 |
|
fldiv |
|- ( ( A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) |
41 |
40
|
3adant3 |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( |_ ` A ) / M ) ) = ( |_ ` ( A / M ) ) ) |
42 |
2
|
recnd |
|- ( A e. RR -> ( |_ ` A ) e. CC ) |
43 |
|
divcan5 |
|- ( ( ( |_ ` A ) e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) |
44 |
42 19 16 43
|
syl3an |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) = ( ( |_ ` A ) / M ) ) |
45 |
44
|
fveq2d |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( |_ ` A ) / M ) ) ) |
46 |
|
recn |
|- ( A e. RR -> A e. CC ) |
47 |
|
divcan5 |
|- ( ( A e. CC /\ ( M e. CC /\ M =/= 0 ) /\ ( N e. CC /\ N =/= 0 ) ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) |
48 |
46 19 16 47
|
syl3an |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( ( N x. A ) / ( N x. M ) ) = ( A / M ) ) |
49 |
48
|
fveq2d |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( A / M ) ) ) |
50 |
41 45 49
|
3eqtr4rd |
|- ( ( A e. RR /\ M e. NN /\ N e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
51 |
50
|
3comr |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( N x. A ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
52 |
39 51
|
eqtrd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) = ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) |
53 |
52
|
oveq2d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) = ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) |
54 |
53
|
oveq2d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( |_ ` ( N x. A ) ) / ( N x. M ) ) ) ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
55 |
36 54
|
eqtrd |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) = ( ( |_ ` ( N x. A ) ) - ( ( N x. M ) x. ( |_ ` ( ( N x. ( |_ ` A ) ) / ( N x. M ) ) ) ) ) ) |
56 |
31 34 55
|
3brtr4d |
|- ( ( N e. NN /\ A e. RR /\ M e. NN ) -> ( ( N x. ( |_ ` A ) ) mod ( N x. M ) ) <_ ( ( |_ ` ( N x. A ) ) mod ( N x. M ) ) ) |