Step |
Hyp |
Ref |
Expression |
1 |
|
modnegd.1 |
|- ( ph -> A e. RR ) |
2 |
|
modnegd.2 |
|- ( ph -> B e. RR ) |
3 |
|
modnegd.3 |
|- ( ph -> C e. RR+ ) |
4 |
|
modnegd.4 |
|- ( ph -> ( A mod C ) = ( B mod C ) ) |
5 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
6 |
5
|
znegcld |
|- ( ph -> -u 1 e. ZZ ) |
7 |
|
modmul1 |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( -u 1 e. ZZ /\ C e. RR+ ) /\ ( A mod C ) = ( B mod C ) ) -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
8 |
1 2 6 3 4 7
|
syl221anc |
|- ( ph -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) |
9 |
1
|
recnd |
|- ( ph -> A e. CC ) |
10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
11 |
10
|
negcld |
|- ( ph -> -u 1 e. CC ) |
12 |
9 11
|
mulcomd |
|- ( ph -> ( A x. -u 1 ) = ( -u 1 x. A ) ) |
13 |
9
|
mulm1d |
|- ( ph -> ( -u 1 x. A ) = -u A ) |
14 |
12 13
|
eqtrd |
|- ( ph -> ( A x. -u 1 ) = -u A ) |
15 |
14
|
oveq1d |
|- ( ph -> ( ( A x. -u 1 ) mod C ) = ( -u A mod C ) ) |
16 |
2
|
recnd |
|- ( ph -> B e. CC ) |
17 |
16 11
|
mulcomd |
|- ( ph -> ( B x. -u 1 ) = ( -u 1 x. B ) ) |
18 |
16
|
mulm1d |
|- ( ph -> ( -u 1 x. B ) = -u B ) |
19 |
17 18
|
eqtrd |
|- ( ph -> ( B x. -u 1 ) = -u B ) |
20 |
19
|
oveq1d |
|- ( ph -> ( ( B x. -u 1 ) mod C ) = ( -u B mod C ) ) |
21 |
8 15 20
|
3eqtr3d |
|- ( ph -> ( -u A mod C ) = ( -u B mod C ) ) |