| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modnegd.1 |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | modnegd.2 |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | modnegd.3 |  |-  ( ph -> C e. RR+ ) | 
						
							| 4 |  | modnegd.4 |  |-  ( ph -> ( A mod C ) = ( B mod C ) ) | 
						
							| 5 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 6 | 5 | znegcld |  |-  ( ph -> -u 1 e. ZZ ) | 
						
							| 7 |  | modmul1 |  |-  ( ( ( A e. RR /\ B e. RR ) /\ ( -u 1 e. ZZ /\ C e. RR+ ) /\ ( A mod C ) = ( B mod C ) ) -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) | 
						
							| 8 | 1 2 6 3 4 7 | syl221anc |  |-  ( ph -> ( ( A x. -u 1 ) mod C ) = ( ( B x. -u 1 ) mod C ) ) | 
						
							| 9 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 10 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 11 | 10 | negcld |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 12 | 9 11 | mulcomd |  |-  ( ph -> ( A x. -u 1 ) = ( -u 1 x. A ) ) | 
						
							| 13 | 9 | mulm1d |  |-  ( ph -> ( -u 1 x. A ) = -u A ) | 
						
							| 14 | 12 13 | eqtrd |  |-  ( ph -> ( A x. -u 1 ) = -u A ) | 
						
							| 15 | 14 | oveq1d |  |-  ( ph -> ( ( A x. -u 1 ) mod C ) = ( -u A mod C ) ) | 
						
							| 16 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 17 | 16 11 | mulcomd |  |-  ( ph -> ( B x. -u 1 ) = ( -u 1 x. B ) ) | 
						
							| 18 | 16 | mulm1d |  |-  ( ph -> ( -u 1 x. B ) = -u B ) | 
						
							| 19 | 17 18 | eqtrd |  |-  ( ph -> ( B x. -u 1 ) = -u B ) | 
						
							| 20 | 19 | oveq1d |  |-  ( ph -> ( ( B x. -u 1 ) mod C ) = ( -u B mod C ) ) | 
						
							| 21 | 8 15 20 | 3eqtr3d |  |-  ( ph -> ( -u A mod C ) = ( -u B mod C ) ) |