Step |
Hyp |
Ref |
Expression |
1 |
|
moeu |
|- ( E* x ph <-> ( E. x ph -> E! x ph ) ) |
2 |
|
imor |
|- ( ( E. x ph -> E! x ph ) <-> ( -. E. x ph \/ E! x ph ) ) |
3 |
|
abn0 |
|- ( { x | ph } =/= (/) <-> E. x ph ) |
4 |
3
|
necon1bbii |
|- ( -. E. x ph <-> { x | ph } = (/) ) |
5 |
|
sdom1 |
|- ( { x | ph } ~< 1o <-> { x | ph } = (/) ) |
6 |
4 5
|
bitr4i |
|- ( -. E. x ph <-> { x | ph } ~< 1o ) |
7 |
|
euen1 |
|- ( E! x ph <-> { x | ph } ~~ 1o ) |
8 |
6 7
|
orbi12i |
|- ( ( -. E. x ph \/ E! x ph ) <-> ( { x | ph } ~< 1o \/ { x | ph } ~~ 1o ) ) |
9 |
|
brdom2 |
|- ( { x | ph } ~<_ 1o <-> ( { x | ph } ~< 1o \/ { x | ph } ~~ 1o ) ) |
10 |
8 9
|
bitr4i |
|- ( ( -. E. x ph \/ E! x ph ) <-> { x | ph } ~<_ 1o ) |
11 |
1 2 10
|
3bitri |
|- ( E* x ph <-> { x | ph } ~<_ 1o ) |