| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moeu |  |-  ( E* x ph <-> ( E. x ph -> E! x ph ) ) | 
						
							| 2 |  | imor |  |-  ( ( E. x ph -> E! x ph ) <-> ( -. E. x ph \/ E! x ph ) ) | 
						
							| 3 |  | abn0 |  |-  ( { x | ph } =/= (/) <-> E. x ph ) | 
						
							| 4 | 3 | necon1bbii |  |-  ( -. E. x ph <-> { x | ph } = (/) ) | 
						
							| 5 |  | sdom1 |  |-  ( { x | ph } ~< 1o <-> { x | ph } = (/) ) | 
						
							| 6 | 4 5 | bitr4i |  |-  ( -. E. x ph <-> { x | ph } ~< 1o ) | 
						
							| 7 |  | euen1 |  |-  ( E! x ph <-> { x | ph } ~~ 1o ) | 
						
							| 8 | 6 7 | orbi12i |  |-  ( ( -. E. x ph \/ E! x ph ) <-> ( { x | ph } ~< 1o \/ { x | ph } ~~ 1o ) ) | 
						
							| 9 |  | brdom2 |  |-  ( { x | ph } ~<_ 1o <-> ( { x | ph } ~< 1o \/ { x | ph } ~~ 1o ) ) | 
						
							| 10 | 8 9 | bitr4i |  |-  ( ( -. E. x ph \/ E! x ph ) <-> { x | ph } ~<_ 1o ) | 
						
							| 11 | 1 2 10 | 3bitri |  |-  ( E* x ph <-> { x | ph } ~<_ 1o ) |