Description: A prime number divides an integer minus 1 iff the integer modulo the prime number is 1. (Contributed by Alexander van der Vekens, 17-May-2018) (Proof shortened by AV, 30-May-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | modprm1div | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
2 | modm1div | |- ( ( P e. ( ZZ>= ` 2 ) /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) |
|
3 | 1 2 | sylan | |- ( ( P e. Prime /\ A e. ZZ ) -> ( ( A mod P ) = 1 <-> P || ( A - 1 ) ) ) |