| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modsubi.1 |  |-  N e. NN | 
						
							| 2 |  | modsubi.2 |  |-  A e. NN | 
						
							| 3 |  | modsubi.3 |  |-  B e. NN0 | 
						
							| 4 |  | modsubi.4 |  |-  M e. NN0 | 
						
							| 5 |  | modsubi.6 |  |-  ( A mod N ) = ( K mod N ) | 
						
							| 6 |  | modsubi.5 |  |-  ( M + B ) = K | 
						
							| 7 | 2 | nnrei |  |-  A e. RR | 
						
							| 8 | 4 3 | nn0addcli |  |-  ( M + B ) e. NN0 | 
						
							| 9 | 8 | nn0rei |  |-  ( M + B ) e. RR | 
						
							| 10 | 6 9 | eqeltrri |  |-  K e. RR | 
						
							| 11 | 7 10 | pm3.2i |  |-  ( A e. RR /\ K e. RR ) | 
						
							| 12 | 3 | nn0rei |  |-  B e. RR | 
						
							| 13 | 12 | renegcli |  |-  -u B e. RR | 
						
							| 14 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 15 | 1 14 | ax-mp |  |-  N e. RR+ | 
						
							| 16 | 13 15 | pm3.2i |  |-  ( -u B e. RR /\ N e. RR+ ) | 
						
							| 17 |  | modadd1 |  |-  ( ( ( A e. RR /\ K e. RR ) /\ ( -u B e. RR /\ N e. RR+ ) /\ ( A mod N ) = ( K mod N ) ) -> ( ( A + -u B ) mod N ) = ( ( K + -u B ) mod N ) ) | 
						
							| 18 | 11 16 5 17 | mp3an |  |-  ( ( A + -u B ) mod N ) = ( ( K + -u B ) mod N ) | 
						
							| 19 | 2 | nncni |  |-  A e. CC | 
						
							| 20 | 3 | nn0cni |  |-  B e. CC | 
						
							| 21 | 19 20 | negsubi |  |-  ( A + -u B ) = ( A - B ) | 
						
							| 22 | 21 | oveq1i |  |-  ( ( A + -u B ) mod N ) = ( ( A - B ) mod N ) | 
						
							| 23 | 10 | recni |  |-  K e. CC | 
						
							| 24 | 23 20 | negsubi |  |-  ( K + -u B ) = ( K - B ) | 
						
							| 25 | 4 | nn0cni |  |-  M e. CC | 
						
							| 26 | 23 20 25 | subadd2i |  |-  ( ( K - B ) = M <-> ( M + B ) = K ) | 
						
							| 27 | 6 26 | mpbir |  |-  ( K - B ) = M | 
						
							| 28 | 24 27 | eqtri |  |-  ( K + -u B ) = M | 
						
							| 29 | 28 | oveq1i |  |-  ( ( K + -u B ) mod N ) = ( M mod N ) | 
						
							| 30 | 18 22 29 | 3eqtr3i |  |-  ( ( A - B ) mod N ) = ( M mod N ) |