| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modcl |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 2 | 1 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( A mod M ) e. RR ) | 
						
							| 3 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> A e. RR ) | 
						
							| 4 |  | simp2 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> B e. RR ) | 
						
							| 5 |  | simp3 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> M e. RR+ ) | 
						
							| 6 |  | modabs2 |  |-  ( ( A e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) | 
						
							| 7 | 6 | 3adant2 |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( A mod M ) mod M ) = ( A mod M ) ) | 
						
							| 8 |  | eqidd |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( B mod M ) = ( B mod M ) ) | 
						
							| 9 | 2 3 4 4 5 7 8 | modsub12d |  |-  ( ( A e. RR /\ B e. RR /\ M e. RR+ ) -> ( ( ( A mod M ) - B ) mod M ) = ( ( A - B ) mod M ) ) |