Step |
Hyp |
Ref |
Expression |
1 |
|
fvoveq1 |
|- ( x = A -> ( |_ ` ( x / y ) ) = ( |_ ` ( A / y ) ) ) |
2 |
1
|
oveq2d |
|- ( x = A -> ( y x. ( |_ ` ( x / y ) ) ) = ( y x. ( |_ ` ( A / y ) ) ) ) |
3 |
|
oveq12 |
|- ( ( x = A /\ ( y x. ( |_ ` ( x / y ) ) ) = ( y x. ( |_ ` ( A / y ) ) ) ) -> ( x - ( y x. ( |_ ` ( x / y ) ) ) ) = ( A - ( y x. ( |_ ` ( A / y ) ) ) ) ) |
4 |
2 3
|
mpdan |
|- ( x = A -> ( x - ( y x. ( |_ ` ( x / y ) ) ) ) = ( A - ( y x. ( |_ ` ( A / y ) ) ) ) ) |
5 |
|
oveq2 |
|- ( y = B -> ( A / y ) = ( A / B ) ) |
6 |
5
|
fveq2d |
|- ( y = B -> ( |_ ` ( A / y ) ) = ( |_ ` ( A / B ) ) ) |
7 |
|
oveq12 |
|- ( ( y = B /\ ( |_ ` ( A / y ) ) = ( |_ ` ( A / B ) ) ) -> ( y x. ( |_ ` ( A / y ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
8 |
6 7
|
mpdan |
|- ( y = B -> ( y x. ( |_ ` ( A / y ) ) ) = ( B x. ( |_ ` ( A / B ) ) ) ) |
9 |
8
|
oveq2d |
|- ( y = B -> ( A - ( y x. ( |_ ` ( A / y ) ) ) ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |
10 |
|
df-mod |
|- mod = ( x e. RR , y e. RR+ |-> ( x - ( y x. ( |_ ` ( x / y ) ) ) ) ) |
11 |
|
ovex |
|- ( A - ( B x. ( |_ ` ( A / B ) ) ) ) e. _V |
12 |
4 9 10 11
|
ovmpo |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) |