Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|- ( A e. RR -> A e. CC ) |
2 |
1
|
adantr |
|- ( ( A e. RR /\ B e. RR+ ) -> A e. CC ) |
3 |
|
refldivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. RR ) |
4 |
3
|
recnd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) |
5 |
|
rpcn |
|- ( B e. RR+ -> B e. CC ) |
6 |
5
|
adantl |
|- ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) |
7 |
4 6
|
mulcld |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( |_ ` ( A / B ) ) x. B ) e. CC ) |
8 |
2 7 6
|
pnpcan2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
9 |
4 6
|
adddirp1d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) = ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) |
10 |
9
|
oveq2d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) ) = ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) x. B ) + B ) ) ) |
11 |
|
modvalr |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |
12 |
8 10 11
|
3eqtr4d |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A + B ) - ( ( ( |_ ` ( A / B ) ) + 1 ) x. B ) ) = ( A mod B ) ) |