| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modval |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( B x. ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 2 |  | rpcn |  |-  ( B e. RR+ -> B e. CC ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A e. RR /\ B e. RR+ ) -> B e. CC ) | 
						
							| 4 |  | rerpdivcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 5 |  | reflcl |  |-  ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) | 
						
							| 6 | 5 | recnd |  |-  ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( |_ ` ( A / B ) ) e. CC ) | 
						
							| 8 | 3 7 | mulcomd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( B x. ( |_ ` ( A / B ) ) ) = ( ( |_ ` ( A / B ) ) x. B ) ) | 
						
							| 9 | 8 | oveq2d |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A - ( B x. ( |_ ` ( A / B ) ) ) ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) | 
						
							| 10 | 1 9 | eqtrd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A mod B ) = ( A - ( ( |_ ` ( A / B ) ) x. B ) ) ) |