| Step | Hyp | Ref | Expression | 
						
							| 1 |  | modxai.1 |  |-  N e. NN | 
						
							| 2 |  | modxai.2 |  |-  A e. NN | 
						
							| 3 |  | modxai.3 |  |-  B e. NN0 | 
						
							| 4 |  | modxai.4 |  |-  D e. ZZ | 
						
							| 5 |  | modxai.5 |  |-  K e. NN0 | 
						
							| 6 |  | modxai.6 |  |-  M e. NN0 | 
						
							| 7 |  | modxai.7 |  |-  C e. NN0 | 
						
							| 8 |  | modxai.8 |  |-  L e. NN0 | 
						
							| 9 |  | modxai.11 |  |-  ( ( A ^ B ) mod N ) = ( K mod N ) | 
						
							| 10 |  | modxai.12 |  |-  ( ( A ^ C ) mod N ) = ( L mod N ) | 
						
							| 11 |  | modxai.9 |  |-  ( B + C ) = E | 
						
							| 12 |  | modxai.10 |  |-  ( ( D x. N ) + M ) = ( K x. L ) | 
						
							| 13 | 11 | oveq2i |  |-  ( A ^ ( B + C ) ) = ( A ^ E ) | 
						
							| 14 | 2 | nncni |  |-  A e. CC | 
						
							| 15 |  | expadd |  |-  ( ( A e. CC /\ B e. NN0 /\ C e. NN0 ) -> ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) ) | 
						
							| 16 | 14 3 7 15 | mp3an |  |-  ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) | 
						
							| 17 | 13 16 | eqtr3i |  |-  ( A ^ E ) = ( ( A ^ B ) x. ( A ^ C ) ) | 
						
							| 18 | 17 | oveq1i |  |-  ( ( A ^ E ) mod N ) = ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) | 
						
							| 19 |  | nnexpcl |  |-  ( ( A e. NN /\ B e. NN0 ) -> ( A ^ B ) e. NN ) | 
						
							| 20 | 2 3 19 | mp2an |  |-  ( A ^ B ) e. NN | 
						
							| 21 | 20 | nnzi |  |-  ( A ^ B ) e. ZZ | 
						
							| 22 | 21 | a1i |  |-  ( T. -> ( A ^ B ) e. ZZ ) | 
						
							| 23 | 5 | nn0zi |  |-  K e. ZZ | 
						
							| 24 | 23 | a1i |  |-  ( T. -> K e. ZZ ) | 
						
							| 25 |  | nnexpcl |  |-  ( ( A e. NN /\ C e. NN0 ) -> ( A ^ C ) e. NN ) | 
						
							| 26 | 2 7 25 | mp2an |  |-  ( A ^ C ) e. NN | 
						
							| 27 | 26 | nnzi |  |-  ( A ^ C ) e. ZZ | 
						
							| 28 | 27 | a1i |  |-  ( T. -> ( A ^ C ) e. ZZ ) | 
						
							| 29 | 8 | nn0zi |  |-  L e. ZZ | 
						
							| 30 | 29 | a1i |  |-  ( T. -> L e. ZZ ) | 
						
							| 31 |  | nnrp |  |-  ( N e. NN -> N e. RR+ ) | 
						
							| 32 | 1 31 | ax-mp |  |-  N e. RR+ | 
						
							| 33 | 32 | a1i |  |-  ( T. -> N e. RR+ ) | 
						
							| 34 | 9 | a1i |  |-  ( T. -> ( ( A ^ B ) mod N ) = ( K mod N ) ) | 
						
							| 35 | 10 | a1i |  |-  ( T. -> ( ( A ^ C ) mod N ) = ( L mod N ) ) | 
						
							| 36 | 22 24 28 30 33 34 35 | modmul12d |  |-  ( T. -> ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) ) | 
						
							| 37 | 36 | mptru |  |-  ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) | 
						
							| 38 |  | zcn |  |-  ( D e. ZZ -> D e. CC ) | 
						
							| 39 | 4 38 | ax-mp |  |-  D e. CC | 
						
							| 40 | 1 | nncni |  |-  N e. CC | 
						
							| 41 | 39 40 | mulcli |  |-  ( D x. N ) e. CC | 
						
							| 42 | 6 | nn0cni |  |-  M e. CC | 
						
							| 43 | 41 42 | addcomi |  |-  ( ( D x. N ) + M ) = ( M + ( D x. N ) ) | 
						
							| 44 | 12 43 | eqtr3i |  |-  ( K x. L ) = ( M + ( D x. N ) ) | 
						
							| 45 | 44 | oveq1i |  |-  ( ( K x. L ) mod N ) = ( ( M + ( D x. N ) ) mod N ) | 
						
							| 46 | 37 45 | eqtri |  |-  ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( M + ( D x. N ) ) mod N ) | 
						
							| 47 | 6 | nn0rei |  |-  M e. RR | 
						
							| 48 |  | modcyc |  |-  ( ( M e. RR /\ N e. RR+ /\ D e. ZZ ) -> ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) ) | 
						
							| 49 | 47 32 4 48 | mp3an |  |-  ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) | 
						
							| 50 | 46 49 | eqtri |  |-  ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( M mod N ) | 
						
							| 51 | 18 50 | eqtri |  |-  ( ( A ^ E ) mod N ) = ( M mod N ) |