Step |
Hyp |
Ref |
Expression |
1 |
|
modxai.1 |
|- N e. NN |
2 |
|
modxai.2 |
|- A e. NN |
3 |
|
modxai.3 |
|- B e. NN0 |
4 |
|
modxai.4 |
|- D e. ZZ |
5 |
|
modxai.5 |
|- K e. NN0 |
6 |
|
modxai.6 |
|- M e. NN0 |
7 |
|
modxai.7 |
|- C e. NN0 |
8 |
|
modxai.8 |
|- L e. NN0 |
9 |
|
modxai.11 |
|- ( ( A ^ B ) mod N ) = ( K mod N ) |
10 |
|
modxai.12 |
|- ( ( A ^ C ) mod N ) = ( L mod N ) |
11 |
|
modxai.9 |
|- ( B + C ) = E |
12 |
|
modxai.10 |
|- ( ( D x. N ) + M ) = ( K x. L ) |
13 |
11
|
oveq2i |
|- ( A ^ ( B + C ) ) = ( A ^ E ) |
14 |
2
|
nncni |
|- A e. CC |
15 |
|
expadd |
|- ( ( A e. CC /\ B e. NN0 /\ C e. NN0 ) -> ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) ) |
16 |
14 3 7 15
|
mp3an |
|- ( A ^ ( B + C ) ) = ( ( A ^ B ) x. ( A ^ C ) ) |
17 |
13 16
|
eqtr3i |
|- ( A ^ E ) = ( ( A ^ B ) x. ( A ^ C ) ) |
18 |
17
|
oveq1i |
|- ( ( A ^ E ) mod N ) = ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) |
19 |
|
nnexpcl |
|- ( ( A e. NN /\ B e. NN0 ) -> ( A ^ B ) e. NN ) |
20 |
2 3 19
|
mp2an |
|- ( A ^ B ) e. NN |
21 |
20
|
nnzi |
|- ( A ^ B ) e. ZZ |
22 |
21
|
a1i |
|- ( T. -> ( A ^ B ) e. ZZ ) |
23 |
5
|
nn0zi |
|- K e. ZZ |
24 |
23
|
a1i |
|- ( T. -> K e. ZZ ) |
25 |
|
nnexpcl |
|- ( ( A e. NN /\ C e. NN0 ) -> ( A ^ C ) e. NN ) |
26 |
2 7 25
|
mp2an |
|- ( A ^ C ) e. NN |
27 |
26
|
nnzi |
|- ( A ^ C ) e. ZZ |
28 |
27
|
a1i |
|- ( T. -> ( A ^ C ) e. ZZ ) |
29 |
8
|
nn0zi |
|- L e. ZZ |
30 |
29
|
a1i |
|- ( T. -> L e. ZZ ) |
31 |
|
nnrp |
|- ( N e. NN -> N e. RR+ ) |
32 |
1 31
|
ax-mp |
|- N e. RR+ |
33 |
32
|
a1i |
|- ( T. -> N e. RR+ ) |
34 |
9
|
a1i |
|- ( T. -> ( ( A ^ B ) mod N ) = ( K mod N ) ) |
35 |
10
|
a1i |
|- ( T. -> ( ( A ^ C ) mod N ) = ( L mod N ) ) |
36 |
22 24 28 30 33 34 35
|
modmul12d |
|- ( T. -> ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) ) |
37 |
36
|
mptru |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( K x. L ) mod N ) |
38 |
|
zcn |
|- ( D e. ZZ -> D e. CC ) |
39 |
4 38
|
ax-mp |
|- D e. CC |
40 |
1
|
nncni |
|- N e. CC |
41 |
39 40
|
mulcli |
|- ( D x. N ) e. CC |
42 |
6
|
nn0cni |
|- M e. CC |
43 |
41 42
|
addcomi |
|- ( ( D x. N ) + M ) = ( M + ( D x. N ) ) |
44 |
12 43
|
eqtr3i |
|- ( K x. L ) = ( M + ( D x. N ) ) |
45 |
44
|
oveq1i |
|- ( ( K x. L ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
46 |
37 45
|
eqtri |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( ( M + ( D x. N ) ) mod N ) |
47 |
6
|
nn0rei |
|- M e. RR |
48 |
|
modcyc |
|- ( ( M e. RR /\ N e. RR+ /\ D e. ZZ ) -> ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) ) |
49 |
47 32 4 48
|
mp3an |
|- ( ( M + ( D x. N ) ) mod N ) = ( M mod N ) |
50 |
46 49
|
eqtri |
|- ( ( ( A ^ B ) x. ( A ^ C ) ) mod N ) = ( M mod N ) |
51 |
18 50
|
eqtri |
|- ( ( A ^ E ) mod N ) = ( M mod N ) |