Step |
Hyp |
Ref |
Expression |
1 |
|
moeq3.1 |
|- B e. _V |
2 |
|
moeq3.2 |
|- C e. _V |
3 |
|
moeq3.3 |
|- -. ( ph /\ ps ) |
4 |
|
eqeq2 |
|- ( y = A -> ( x = y <-> x = A ) ) |
5 |
4
|
anbi2d |
|- ( y = A -> ( ( ph /\ x = y ) <-> ( ph /\ x = A ) ) ) |
6 |
|
biidd |
|- ( y = A -> ( ( -. ( ph \/ ps ) /\ x = B ) <-> ( -. ( ph \/ ps ) /\ x = B ) ) ) |
7 |
|
biidd |
|- ( y = A -> ( ( ps /\ x = C ) <-> ( ps /\ x = C ) ) ) |
8 |
5 6 7
|
3orbi123d |
|- ( y = A -> ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
9 |
8
|
eubidv |
|- ( y = A -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
10 |
|
vex |
|- y e. _V |
11 |
10 1 2 3
|
eueq3 |
|- E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |
12 |
9 11
|
vtoclg |
|- ( A e. _V -> E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
13 |
|
eumo |
|- ( E! x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
14 |
12 13
|
syl |
|- ( A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
15 |
|
eqvisset |
|- ( x = A -> A e. _V ) |
16 |
|
pm2.21 |
|- ( -. A e. _V -> ( A e. _V -> x = y ) ) |
17 |
15 16
|
syl5 |
|- ( -. A e. _V -> ( x = A -> x = y ) ) |
18 |
17
|
anim2d |
|- ( -. A e. _V -> ( ( ph /\ x = A ) -> ( ph /\ x = y ) ) ) |
19 |
18
|
orim1d |
|- ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) ) |
20 |
|
3orass |
|- ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = A ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
21 |
|
3orass |
|- ( ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) <-> ( ( ph /\ x = y ) \/ ( ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
22 |
19 20 21
|
3imtr4g |
|- ( -. A e. _V -> ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
23 |
22
|
alrimiv |
|- ( -. A e. _V -> A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
24 |
|
euimmo |
|- ( A. x ( ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) -> ( E! x ( ( ph /\ x = y ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) ) |
25 |
23 11 24
|
mpisyl |
|- ( -. A e. _V -> E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) ) |
26 |
14 25
|
pm2.61i |
|- E* x ( ( ph /\ x = A ) \/ ( -. ( ph \/ ps ) /\ x = B ) \/ ( ps /\ x = C ) ) |