Description: Uniqueness implies that existence is equivalent to unique existence. (Contributed by BJ, 7-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | moeuex | |- ( E* x ph -> ( E. x ph <-> E! x ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu | |- ( E! x ph <-> ( E. x ph /\ E* x ph ) ) |
|
2 | 1 | rbaibr | |- ( E* x ph -> ( E. x ph <-> E! x ph ) ) |