| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mof.1 |  |-  F/ y ph | 
						
							| 2 |  | df-mo |  |-  ( E* x ph <-> E. z A. x ( ph -> x = z ) ) | 
						
							| 3 |  | nfv |  |-  F/ y x = z | 
						
							| 4 | 1 3 | nfim |  |-  F/ y ( ph -> x = z ) | 
						
							| 5 | 4 | nfal |  |-  F/ y A. x ( ph -> x = z ) | 
						
							| 6 |  | nfv |  |-  F/ z A. x ( ph -> x = y ) | 
						
							| 7 |  | equequ2 |  |-  ( z = y -> ( x = z <-> x = y ) ) | 
						
							| 8 | 7 | imbi2d |  |-  ( z = y -> ( ( ph -> x = z ) <-> ( ph -> x = y ) ) ) | 
						
							| 9 | 8 | albidv |  |-  ( z = y -> ( A. x ( ph -> x = z ) <-> A. x ( ph -> x = y ) ) ) | 
						
							| 10 | 5 6 9 | cbvexv1 |  |-  ( E. z A. x ( ph -> x = z ) <-> E. y A. x ( ph -> x = y ) ) | 
						
							| 11 | 2 10 | bitri |  |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |