Step |
Hyp |
Ref |
Expression |
1 |
|
mof.1 |
|- F/ y ph |
2 |
|
df-mo |
|- ( E* x ph <-> E. z A. x ( ph -> x = z ) ) |
3 |
|
nfv |
|- F/ y x = z |
4 |
1 3
|
nfim |
|- F/ y ( ph -> x = z ) |
5 |
4
|
nfal |
|- F/ y A. x ( ph -> x = z ) |
6 |
|
nfv |
|- F/ z A. x ( ph -> x = y ) |
7 |
|
equequ2 |
|- ( z = y -> ( x = z <-> x = y ) ) |
8 |
7
|
imbi2d |
|- ( z = y -> ( ( ph -> x = z ) <-> ( ph -> x = y ) ) ) |
9 |
8
|
albidv |
|- ( z = y -> ( A. x ( ph -> x = z ) <-> A. x ( ph -> x = y ) ) ) |
10 |
5 6 9
|
cbvexv1 |
|- ( E. z A. x ( ph -> x = z ) <-> E. y A. x ( ph -> x = y ) ) |
11 |
2 10
|
bitri |
|- ( E* x ph <-> E. y A. x ( ph -> x = y ) ) |