| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 |  | eqeq2 |  |-  ( g = (/) -> ( f = g <-> f = (/) ) ) | 
						
							| 3 | 2 | imbi2d |  |-  ( g = (/) -> ( ( f : A --> (/) -> f = g ) <-> ( f : A --> (/) -> f = (/) ) ) ) | 
						
							| 4 | 3 | albidv |  |-  ( g = (/) -> ( A. f ( f : A --> (/) -> f = g ) <-> A. f ( f : A --> (/) -> f = (/) ) ) ) | 
						
							| 5 | 1 4 | spcev |  |-  ( A. f ( f : A --> (/) -> f = (/) ) -> E. g A. f ( f : A --> (/) -> f = g ) ) | 
						
							| 6 |  | f00 |  |-  ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) | 
						
							| 7 | 6 | simplbi |  |-  ( f : A --> (/) -> f = (/) ) | 
						
							| 8 | 5 7 | mpg |  |-  E. g A. f ( f : A --> (/) -> f = g ) | 
						
							| 9 |  | df-mo |  |-  ( E* f f : A --> (/) <-> E. g A. f ( f : A --> (/) -> f = g ) ) | 
						
							| 10 | 8 9 | mpbir |  |-  E* f f : A --> (/) |