Step |
Hyp |
Ref |
Expression |
1 |
|
0ex |
|- (/) e. _V |
2 |
|
eqeq2 |
|- ( g = (/) -> ( f = g <-> f = (/) ) ) |
3 |
2
|
imbi2d |
|- ( g = (/) -> ( ( f : A --> (/) -> f = g ) <-> ( f : A --> (/) -> f = (/) ) ) ) |
4 |
3
|
albidv |
|- ( g = (/) -> ( A. f ( f : A --> (/) -> f = g ) <-> A. f ( f : A --> (/) -> f = (/) ) ) ) |
5 |
1 4
|
spcev |
|- ( A. f ( f : A --> (/) -> f = (/) ) -> E. g A. f ( f : A --> (/) -> f = g ) ) |
6 |
|
f00 |
|- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
7 |
6
|
simplbi |
|- ( f : A --> (/) -> f = (/) ) |
8 |
5 7
|
mpg |
|- E. g A. f ( f : A --> (/) -> f = g ) |
9 |
|
df-mo |
|- ( E* f f : A --> (/) <-> E. g A. f ( f : A --> (/) -> f = g ) ) |
10 |
8 9
|
mpbir |
|- E* f f : A --> (/) |