Metamath Proof Explorer


Theorem mof02

Description: A variant of mof0 . (Contributed by Zhi Wang, 20-Sep-2024)

Ref Expression
Assertion mof02
|- ( B = (/) -> E* f f : A --> B )

Proof

Step Hyp Ref Expression
1 mof0
 |-  E* f f : A --> (/)
2 feq3
 |-  ( B = (/) -> ( f : A --> B <-> f : A --> (/) ) )
3 2 mobidv
 |-  ( B = (/) -> ( E* f f : A --> B <-> E* f f : A --> (/) ) )
4 1 3 mpbiri
 |-  ( B = (/) -> E* f f : A --> B )