Step |
Hyp |
Ref |
Expression |
1 |
|
f00 |
|- ( f : A --> (/) <-> ( f = (/) /\ A = (/) ) ) |
2 |
1
|
simplbi |
|- ( f : A --> (/) -> f = (/) ) |
3 |
|
f00 |
|- ( g : A --> (/) <-> ( g = (/) /\ A = (/) ) ) |
4 |
3
|
simplbi |
|- ( g : A --> (/) -> g = (/) ) |
5 |
|
eqtr3 |
|- ( ( f = (/) /\ g = (/) ) -> f = g ) |
6 |
2 4 5
|
syl2an |
|- ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) |
7 |
6
|
gen2 |
|- A. f A. g ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) |
8 |
|
feq1 |
|- ( f = g -> ( f : A --> (/) <-> g : A --> (/) ) ) |
9 |
8
|
mo4 |
|- ( E* f f : A --> (/) <-> A. f A. g ( ( f : A --> (/) /\ g : A --> (/) ) -> f = g ) ) |
10 |
7 9
|
mpbir |
|- E* f f : A --> (/) |