| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mofeu.1 |  |-  G = ( A X. B ) | 
						
							| 2 |  | mofeu.2 |  |-  ( ph -> ( B = (/) -> A = (/) ) ) | 
						
							| 3 |  | mofeu.3 |  |-  ( ph -> E* x x e. B ) | 
						
							| 4 | 2 | imp |  |-  ( ( ph /\ B = (/) ) -> A = (/) ) | 
						
							| 5 |  | f00 |  |-  ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) | 
						
							| 6 | 5 | rbaib |  |-  ( A = (/) -> ( F : A --> (/) <-> F = (/) ) ) | 
						
							| 7 | 4 6 | syl |  |-  ( ( ph /\ B = (/) ) -> ( F : A --> (/) <-> F = (/) ) ) | 
						
							| 8 |  | feq3 |  |-  ( B = (/) -> ( F : A --> B <-> F : A --> (/) ) ) | 
						
							| 9 | 8 | adantl |  |-  ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F : A --> (/) ) ) | 
						
							| 10 |  | xpeq2 |  |-  ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) | 
						
							| 11 |  | xp0 |  |-  ( A X. (/) ) = (/) | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( B = (/) -> ( A X. B ) = (/) ) | 
						
							| 13 | 1 12 | eqtrid |  |-  ( B = (/) -> G = (/) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ B = (/) ) -> G = (/) ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( ( ph /\ B = (/) ) -> ( F = G <-> F = (/) ) ) | 
						
							| 16 | 7 9 15 | 3bitr4d |  |-  ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F = G ) ) | 
						
							| 17 |  | 19.42v |  |-  ( E. y ( ph /\ B = { y } ) <-> ( ph /\ E. y B = { y } ) ) | 
						
							| 18 |  | fconst2g |  |-  ( y e. _V -> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) | 
						
							| 19 | 18 | elv |  |-  ( F : A --> { y } <-> F = ( A X. { y } ) ) | 
						
							| 20 |  | feq3 |  |-  ( B = { y } -> ( F : A --> B <-> F : A --> { y } ) ) | 
						
							| 21 |  | xpeq2 |  |-  ( B = { y } -> ( A X. B ) = ( A X. { y } ) ) | 
						
							| 22 | 21 | eqeq2d |  |-  ( B = { y } -> ( F = ( A X. B ) <-> F = ( A X. { y } ) ) ) | 
						
							| 23 | 20 22 | bibi12d |  |-  ( B = { y } -> ( ( F : A --> B <-> F = ( A X. B ) ) <-> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) ) | 
						
							| 24 | 19 23 | mpbiri |  |-  ( B = { y } -> ( F : A --> B <-> F = ( A X. B ) ) ) | 
						
							| 25 | 1 | eqeq2i |  |-  ( F = G <-> F = ( A X. B ) ) | 
						
							| 26 | 24 25 | bitr4di |  |-  ( B = { y } -> ( F : A --> B <-> F = G ) ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) | 
						
							| 28 | 27 | exlimiv |  |-  ( E. y ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) | 
						
							| 29 | 17 28 | sylbir |  |-  ( ( ph /\ E. y B = { y } ) -> ( F : A --> B <-> F = G ) ) | 
						
							| 30 |  | mo0sn |  |-  ( E* x x e. B <-> ( B = (/) \/ E. y B = { y } ) ) | 
						
							| 31 | 3 30 | sylib |  |-  ( ph -> ( B = (/) \/ E. y B = { y } ) ) | 
						
							| 32 | 16 29 31 | mpjaodan |  |-  ( ph -> ( F : A --> B <-> F = G ) ) |