Step |
Hyp |
Ref |
Expression |
1 |
|
mofeu.1 |
|- G = ( A X. B ) |
2 |
|
mofeu.2 |
|- ( ph -> ( B = (/) -> A = (/) ) ) |
3 |
|
mofeu.3 |
|- ( ph -> E* x x e. B ) |
4 |
2
|
imp |
|- ( ( ph /\ B = (/) ) -> A = (/) ) |
5 |
|
f00 |
|- ( F : A --> (/) <-> ( F = (/) /\ A = (/) ) ) |
6 |
5
|
rbaib |
|- ( A = (/) -> ( F : A --> (/) <-> F = (/) ) ) |
7 |
4 6
|
syl |
|- ( ( ph /\ B = (/) ) -> ( F : A --> (/) <-> F = (/) ) ) |
8 |
|
feq3 |
|- ( B = (/) -> ( F : A --> B <-> F : A --> (/) ) ) |
9 |
8
|
adantl |
|- ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F : A --> (/) ) ) |
10 |
|
xpeq2 |
|- ( B = (/) -> ( A X. B ) = ( A X. (/) ) ) |
11 |
|
xp0 |
|- ( A X. (/) ) = (/) |
12 |
10 11
|
eqtrdi |
|- ( B = (/) -> ( A X. B ) = (/) ) |
13 |
1 12
|
eqtrid |
|- ( B = (/) -> G = (/) ) |
14 |
13
|
adantl |
|- ( ( ph /\ B = (/) ) -> G = (/) ) |
15 |
14
|
eqeq2d |
|- ( ( ph /\ B = (/) ) -> ( F = G <-> F = (/) ) ) |
16 |
7 9 15
|
3bitr4d |
|- ( ( ph /\ B = (/) ) -> ( F : A --> B <-> F = G ) ) |
17 |
|
19.42v |
|- ( E. y ( ph /\ B = { y } ) <-> ( ph /\ E. y B = { y } ) ) |
18 |
|
fconst2g |
|- ( y e. _V -> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) |
19 |
18
|
elv |
|- ( F : A --> { y } <-> F = ( A X. { y } ) ) |
20 |
|
feq3 |
|- ( B = { y } -> ( F : A --> B <-> F : A --> { y } ) ) |
21 |
|
xpeq2 |
|- ( B = { y } -> ( A X. B ) = ( A X. { y } ) ) |
22 |
21
|
eqeq2d |
|- ( B = { y } -> ( F = ( A X. B ) <-> F = ( A X. { y } ) ) ) |
23 |
20 22
|
bibi12d |
|- ( B = { y } -> ( ( F : A --> B <-> F = ( A X. B ) ) <-> ( F : A --> { y } <-> F = ( A X. { y } ) ) ) ) |
24 |
19 23
|
mpbiri |
|- ( B = { y } -> ( F : A --> B <-> F = ( A X. B ) ) ) |
25 |
1
|
eqeq2i |
|- ( F = G <-> F = ( A X. B ) ) |
26 |
24 25
|
bitr4di |
|- ( B = { y } -> ( F : A --> B <-> F = G ) ) |
27 |
26
|
adantl |
|- ( ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) |
28 |
27
|
exlimiv |
|- ( E. y ( ph /\ B = { y } ) -> ( F : A --> B <-> F = G ) ) |
29 |
17 28
|
sylbir |
|- ( ( ph /\ E. y B = { y } ) -> ( F : A --> B <-> F = G ) ) |
30 |
|
mo0sn |
|- ( E* x x e. B <-> ( B = (/) \/ E. y B = { y } ) ) |
31 |
3 30
|
sylib |
|- ( ph -> ( B = (/) \/ E. y B = { y } ) ) |
32 |
16 29 31
|
mpjaodan |
|- ( ph -> ( F : A --> B <-> F = G ) ) |