Step |
Hyp |
Ref |
Expression |
1 |
|
fconst2g |
|- ( B e. V -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) |
2 |
1
|
biimpd |
|- ( B e. V -> ( f : A --> { B } -> f = ( A X. { B } ) ) ) |
3 |
|
fconst2g |
|- ( B e. V -> ( g : A --> { B } <-> g = ( A X. { B } ) ) ) |
4 |
3
|
biimpd |
|- ( B e. V -> ( g : A --> { B } -> g = ( A X. { B } ) ) ) |
5 |
|
eqtr3 |
|- ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) |
6 |
5
|
a1i |
|- ( B e. V -> ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) ) |
7 |
2 4 6
|
syl2and |
|- ( B e. V -> ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
8 |
7
|
alrimivv |
|- ( B e. V -> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
9 |
|
feq1 |
|- ( f = g -> ( f : A --> { B } <-> g : A --> { B } ) ) |
10 |
9
|
mo4 |
|- ( E* f f : A --> { B } <-> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) |
11 |
8 10
|
sylibr |
|- ( B e. V -> E* f f : A --> { B } ) |