| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fconst2g |  |-  ( B e. V -> ( f : A --> { B } <-> f = ( A X. { B } ) ) ) | 
						
							| 2 | 1 | biimpd |  |-  ( B e. V -> ( f : A --> { B } -> f = ( A X. { B } ) ) ) | 
						
							| 3 |  | fconst2g |  |-  ( B e. V -> ( g : A --> { B } <-> g = ( A X. { B } ) ) ) | 
						
							| 4 | 3 | biimpd |  |-  ( B e. V -> ( g : A --> { B } -> g = ( A X. { B } ) ) ) | 
						
							| 5 |  | eqtr3 |  |-  ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) | 
						
							| 6 | 5 | a1i |  |-  ( B e. V -> ( ( f = ( A X. { B } ) /\ g = ( A X. { B } ) ) -> f = g ) ) | 
						
							| 7 | 2 4 6 | syl2and |  |-  ( B e. V -> ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) | 
						
							| 8 | 7 | alrimivv |  |-  ( B e. V -> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) | 
						
							| 9 |  | feq1 |  |-  ( f = g -> ( f : A --> { B } <-> g : A --> { B } ) ) | 
						
							| 10 | 9 | mo4 |  |-  ( E* f f : A --> { B } <-> A. f A. g ( ( f : A --> { B } /\ g : A --> { B } ) -> f = g ) ) | 
						
							| 11 | 8 10 | sylibr |  |-  ( B e. V -> E* f f : A --> { B } ) |