| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mofsn |  |-  ( Y e. _V -> E* f f : A --> { Y } ) | 
						
							| 2 | 1 | adantl |  |-  ( ( B = { Y } /\ Y e. _V ) -> E* f f : A --> { Y } ) | 
						
							| 3 |  | feq3 |  |-  ( B = { Y } -> ( f : A --> B <-> f : A --> { Y } ) ) | 
						
							| 4 | 3 | mobidv |  |-  ( B = { Y } -> ( E* f f : A --> B <-> E* f f : A --> { Y } ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( B = { Y } /\ Y e. _V ) -> ( E* f f : A --> B <-> E* f f : A --> { Y } ) ) | 
						
							| 6 | 2 5 | mpbird |  |-  ( ( B = { Y } /\ Y e. _V ) -> E* f f : A --> B ) | 
						
							| 7 |  | simpl |  |-  ( ( B = { Y } /\ -. Y e. _V ) -> B = { Y } ) | 
						
							| 8 |  | snprc |  |-  ( -. Y e. _V <-> { Y } = (/) ) | 
						
							| 9 | 8 | biimpi |  |-  ( -. Y e. _V -> { Y } = (/) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( B = { Y } /\ -. Y e. _V ) -> { Y } = (/) ) | 
						
							| 11 | 7 10 | eqtrd |  |-  ( ( B = { Y } /\ -. Y e. _V ) -> B = (/) ) | 
						
							| 12 |  | mof02 |  |-  ( B = (/) -> E* f f : A --> B ) | 
						
							| 13 | 11 12 | syl |  |-  ( ( B = { Y } /\ -. Y e. _V ) -> E* f f : A --> B ) | 
						
							| 14 | 6 13 | pm2.61dan |  |-  ( B = { Y } -> E* f f : A --> B ) |