| Step |
Hyp |
Ref |
Expression |
| 1 |
|
moi.1 |
|- ( x = A -> ( ph <-> ps ) ) |
| 2 |
|
moi.2 |
|- ( x = B -> ( ph <-> ch ) ) |
| 3 |
1 2
|
mob |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph /\ ps ) -> ( A = B <-> ch ) ) |
| 4 |
3
|
biimprd |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph /\ ps ) -> ( ch -> A = B ) ) |
| 5 |
4
|
3expia |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph ) -> ( ps -> ( ch -> A = B ) ) ) |
| 6 |
5
|
impd |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph ) -> ( ( ps /\ ch ) -> A = B ) ) |
| 7 |
6
|
3impia |
|- ( ( ( A e. C /\ B e. D ) /\ E* x ph /\ ( ps /\ ch ) ) -> A = B ) |