Metamath Proof Explorer


Theorem moi2

Description: Consequence of "at most one". (Contributed by NM, 29-Jun-2008)

Ref Expression
Hypothesis moi2.1
|- ( x = A -> ( ph <-> ps ) )
Assertion moi2
|- ( ( ( A e. B /\ E* x ph ) /\ ( ph /\ ps ) ) -> x = A )

Proof

Step Hyp Ref Expression
1 moi2.1
 |-  ( x = A -> ( ph <-> ps ) )
2 1 mob2
 |-  ( ( A e. B /\ E* x ph /\ ph ) -> ( x = A <-> ps ) )
3 2 3expa
 |-  ( ( ( A e. B /\ E* x ph ) /\ ph ) -> ( x = A <-> ps ) )
4 3 biimprd
 |-  ( ( ( A e. B /\ E* x ph ) /\ ph ) -> ( ps -> x = A ) )
5 4 impr
 |-  ( ( ( A e. B /\ E* x ph ) /\ ( ph /\ ps ) ) -> x = A )