Metamath Proof Explorer


Theorem moim

Description: The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995)

Ref Expression
Assertion moim
|- ( A. x ( ph -> ps ) -> ( E* x ps -> E* x ph ) )

Proof

Step Hyp Ref Expression
1 imim1
 |-  ( ( ph -> ps ) -> ( ( ps -> x = y ) -> ( ph -> x = y ) ) )
2 1 al2imi
 |-  ( A. x ( ph -> ps ) -> ( A. x ( ps -> x = y ) -> A. x ( ph -> x = y ) ) )
3 2 eximdv
 |-  ( A. x ( ph -> ps ) -> ( E. y A. x ( ps -> x = y ) -> E. y A. x ( ph -> x = y ) ) )
4 df-mo
 |-  ( E* x ps <-> E. y A. x ( ps -> x = y ) )
5 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
6 3 4 5 3imtr4g
 |-  ( A. x ( ph -> ps ) -> ( E* x ps -> E* x ph ) )