Metamath Proof Explorer


Theorem moimi

Description: The at-most-one quantifier reverses implication. (Contributed by NM, 15-Feb-2006) Remove use of ax-5 . (Revised by Steven Nguyen, 9-May-2023)

Ref Expression
Hypothesis moimi.1
|- ( ph -> ps )
Assertion moimi
|- ( E* x ps -> E* x ph )

Proof

Step Hyp Ref Expression
1 moimi.1
 |-  ( ph -> ps )
2 1 imim1i
 |-  ( ( ps -> x = y ) -> ( ph -> x = y ) )
3 2 alimi
 |-  ( A. x ( ps -> x = y ) -> A. x ( ph -> x = y ) )
4 3 eximi
 |-  ( E. y A. x ( ps -> x = y ) -> E. y A. x ( ph -> x = y ) )
5 df-mo
 |-  ( E* x ps <-> E. y A. x ( ps -> x = y ) )
6 df-mo
 |-  ( E* x ph <-> E. y A. x ( ph -> x = y ) )
7 4 5 6 3imtr4i
 |-  ( E* x ps -> E* x ph )