| Step |
Hyp |
Ref |
Expression |
| 1 |
|
equequ2 |
|- ( y = t -> ( x = y <-> x = t ) ) |
| 2 |
1
|
imbi2d |
|- ( y = t -> ( ( ph -> x = y ) <-> ( ph -> x = t ) ) ) |
| 3 |
2
|
albidv |
|- ( y = t -> ( A. x ( ph -> x = y ) <-> A. x ( ph -> x = t ) ) ) |
| 4 |
3
|
cbvexvw |
|- ( E. y A. x ( ph -> x = y ) <-> E. t A. x ( ph -> x = t ) ) |
| 5 |
|
equequ2 |
|- ( t = z -> ( x = t <-> x = z ) ) |
| 6 |
5
|
imbi2d |
|- ( t = z -> ( ( ph -> x = t ) <-> ( ph -> x = z ) ) ) |
| 7 |
6
|
albidv |
|- ( t = z -> ( A. x ( ph -> x = t ) <-> A. x ( ph -> x = z ) ) ) |
| 8 |
7
|
cbvexvw |
|- ( E. t A. x ( ph -> x = t ) <-> E. z A. x ( ph -> x = z ) ) |
| 9 |
4 8
|
bitri |
|- ( E. y A. x ( ph -> x = y ) <-> E. z A. x ( ph -> x = z ) ) |