Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ismon.b | |- B = ( Base ` C ) |
|
ismon.h | |- H = ( Hom ` C ) |
||
ismon.o | |- .x. = ( comp ` C ) |
||
ismon.s | |- M = ( Mono ` C ) |
||
ismon.c | |- ( ph -> C e. Cat ) |
||
ismon.x | |- ( ph -> X e. B ) |
||
ismon.y | |- ( ph -> Y e. B ) |
||
Assertion | monhom | |- ( ph -> ( X M Y ) C_ ( X H Y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismon.b | |- B = ( Base ` C ) |
|
2 | ismon.h | |- H = ( Hom ` C ) |
|
3 | ismon.o | |- .x. = ( comp ` C ) |
|
4 | ismon.s | |- M = ( Mono ` C ) |
|
5 | ismon.c | |- ( ph -> C e. Cat ) |
|
6 | ismon.x | |- ( ph -> X e. B ) |
|
7 | ismon.y | |- ( ph -> Y e. B ) |
|
8 | 1 2 3 4 5 6 7 | ismon | |- ( ph -> ( f e. ( X M Y ) <-> ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( f ( <. z , X >. .x. Y ) g ) ) ) ) ) |
9 | simpl | |- ( ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( f ( <. z , X >. .x. Y ) g ) ) ) -> f e. ( X H Y ) ) |
|
10 | 8 9 | syl6bi | |- ( ph -> ( f e. ( X M Y ) -> f e. ( X H Y ) ) ) |
11 | 10 | ssrdv | |- ( ph -> ( X M Y ) C_ ( X H Y ) ) |