Description: A monomorphism is a morphism. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismon.b | |- B = ( Base ` C ) | |
| ismon.h | |- H = ( Hom ` C ) | ||
| ismon.o | |- .x. = ( comp ` C ) | ||
| ismon.s | |- M = ( Mono ` C ) | ||
| ismon.c | |- ( ph -> C e. Cat ) | ||
| ismon.x | |- ( ph -> X e. B ) | ||
| ismon.y | |- ( ph -> Y e. B ) | ||
| Assertion | monhom | |- ( ph -> ( X M Y ) C_ ( X H Y ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ismon.b | |- B = ( Base ` C ) | |
| 2 | ismon.h | |- H = ( Hom ` C ) | |
| 3 | ismon.o | |- .x. = ( comp ` C ) | |
| 4 | ismon.s | |- M = ( Mono ` C ) | |
| 5 | ismon.c | |- ( ph -> C e. Cat ) | |
| 6 | ismon.x | |- ( ph -> X e. B ) | |
| 7 | ismon.y | |- ( ph -> Y e. B ) | |
| 8 | 1 2 3 4 5 6 7 | ismon | |- ( ph -> ( f e. ( X M Y ) <-> ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( f ( <. z , X >. .x. Y ) g ) ) ) ) ) | 
| 9 | simpl | |- ( ( f e. ( X H Y ) /\ A. z e. B Fun `' ( g e. ( z H X ) |-> ( f ( <. z , X >. .x. Y ) g ) ) ) -> f e. ( X H Y ) ) | |
| 10 | 8 9 | biimtrdi | |- ( ph -> ( f e. ( X M Y ) -> f e. ( X H Y ) ) ) | 
| 11 | 10 | ssrdv | |- ( ph -> ( X M Y ) C_ ( X H Y ) ) |