Step |
Hyp |
Ref |
Expression |
1 |
|
ismon.b |
|- B = ( Base ` C ) |
2 |
|
ismon.h |
|- H = ( Hom ` C ) |
3 |
|
ismon.o |
|- .x. = ( comp ` C ) |
4 |
|
ismon.s |
|- M = ( Mono ` C ) |
5 |
|
ismon.c |
|- ( ph -> C e. Cat ) |
6 |
|
ismon.x |
|- ( ph -> X e. B ) |
7 |
|
ismon.y |
|- ( ph -> Y e. B ) |
8 |
|
moni.z |
|- ( ph -> Z e. B ) |
9 |
|
moni.f |
|- ( ph -> F e. ( X M Y ) ) |
10 |
|
moni.g |
|- ( ph -> G e. ( Z H X ) ) |
11 |
|
moni.k |
|- ( ph -> K e. ( Z H X ) ) |
12 |
1 2 3 4 5 6 7
|
ismon2 |
|- ( ph -> ( F e. ( X M Y ) <-> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) ) |
13 |
9 12
|
mpbid |
|- ( ph -> ( F e. ( X H Y ) /\ A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) ) |
14 |
13
|
simprd |
|- ( ph -> A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) ) |
15 |
10
|
adantr |
|- ( ( ph /\ z = Z ) -> G e. ( Z H X ) ) |
16 |
|
simpr |
|- ( ( ph /\ z = Z ) -> z = Z ) |
17 |
16
|
oveq1d |
|- ( ( ph /\ z = Z ) -> ( z H X ) = ( Z H X ) ) |
18 |
15 17
|
eleqtrrd |
|- ( ( ph /\ z = Z ) -> G e. ( z H X ) ) |
19 |
11
|
adantr |
|- ( ( ph /\ z = Z ) -> K e. ( Z H X ) ) |
20 |
19 17
|
eleqtrrd |
|- ( ( ph /\ z = Z ) -> K e. ( z H X ) ) |
21 |
20
|
adantr |
|- ( ( ( ph /\ z = Z ) /\ g = G ) -> K e. ( z H X ) ) |
22 |
|
simpllr |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> z = Z ) |
23 |
22
|
opeq1d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> <. z , X >. = <. Z , X >. ) |
24 |
23
|
oveq1d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( <. z , X >. .x. Y ) = ( <. Z , X >. .x. Y ) ) |
25 |
|
eqidd |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> F = F ) |
26 |
|
simplr |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> g = G ) |
27 |
24 25 26
|
oveq123d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. Z , X >. .x. Y ) G ) ) |
28 |
|
simpr |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> h = K ) |
29 |
24 25 28
|
oveq123d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( F ( <. z , X >. .x. Y ) h ) = ( F ( <. Z , X >. .x. Y ) K ) ) |
30 |
27 29
|
eqeq12d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) <-> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) ) ) |
31 |
26 28
|
eqeq12d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( g = h <-> G = K ) ) |
32 |
30 31
|
imbi12d |
|- ( ( ( ( ph /\ z = Z ) /\ g = G ) /\ h = K ) -> ( ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) <-> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
33 |
21 32
|
rspcdv |
|- ( ( ( ph /\ z = Z ) /\ g = G ) -> ( A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
34 |
18 33
|
rspcimdv |
|- ( ( ph /\ z = Z ) -> ( A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
35 |
8 34
|
rspcimdv |
|- ( ph -> ( A. z e. B A. g e. ( z H X ) A. h e. ( z H X ) ( ( F ( <. z , X >. .x. Y ) g ) = ( F ( <. z , X >. .x. Y ) h ) -> g = h ) -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) ) |
36 |
14 35
|
mpd |
|- ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) -> G = K ) ) |
37 |
|
oveq2 |
|- ( G = K -> ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) ) |
38 |
36 37
|
impbid1 |
|- ( ph -> ( ( F ( <. Z , X >. .x. Y ) G ) = ( F ( <. Z , X >. .x. Y ) K ) <-> G = K ) ) |