| Step |
Hyp |
Ref |
Expression |
| 1 |
|
monoord2.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
| 2 |
|
monoord2.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) |
| 3 |
|
monoord2.3 |
|- ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 4 |
2
|
renegcld |
|- ( ( ph /\ k e. ( M ... N ) ) -> -u ( F ` k ) e. RR ) |
| 5 |
4
|
fmpttd |
|- ( ph -> ( k e. ( M ... N ) |-> -u ( F ` k ) ) : ( M ... N ) --> RR ) |
| 6 |
5
|
ffvelcdmda |
|- ( ( ph /\ n e. ( M ... N ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) e. RR ) |
| 7 |
3
|
ralrimiva |
|- ( ph -> A. k e. ( M ... ( N - 1 ) ) ( F ` ( k + 1 ) ) <_ ( F ` k ) ) |
| 8 |
|
fvoveq1 |
|- ( k = n -> ( F ` ( k + 1 ) ) = ( F ` ( n + 1 ) ) ) |
| 9 |
|
fveq2 |
|- ( k = n -> ( F ` k ) = ( F ` n ) ) |
| 10 |
8 9
|
breq12d |
|- ( k = n -> ( ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) ) |
| 11 |
10
|
cbvralvw |
|- ( A. k e. ( M ... ( N - 1 ) ) ( F ` ( k + 1 ) ) <_ ( F ` k ) <-> A. n e. ( M ... ( N - 1 ) ) ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 12 |
7 11
|
sylib |
|- ( ph -> A. n e. ( M ... ( N - 1 ) ) ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 13 |
12
|
r19.21bi |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` ( n + 1 ) ) <_ ( F ` n ) ) |
| 14 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( F ` k ) = ( F ` ( n + 1 ) ) ) |
| 15 |
14
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( n + 1 ) ) e. RR ) ) |
| 16 |
2
|
ralrimiva |
|- ( ph -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> A. k e. ( M ... N ) ( F ` k ) e. RR ) |
| 18 |
|
fzp1elp1 |
|- ( n e. ( M ... ( N - 1 ) ) -> ( n + 1 ) e. ( M ... ( ( N - 1 ) + 1 ) ) ) |
| 19 |
18
|
adantl |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( M ... ( ( N - 1 ) + 1 ) ) ) |
| 20 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
| 21 |
1 20
|
syl |
|- ( ph -> N e. ZZ ) |
| 22 |
21
|
zcnd |
|- ( ph -> N e. CC ) |
| 23 |
|
ax-1cn |
|- 1 e. CC |
| 24 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
| 25 |
22 23 24
|
sylancl |
|- ( ph -> ( ( N - 1 ) + 1 ) = N ) |
| 26 |
25
|
oveq2d |
|- ( ph -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( M ... ( ( N - 1 ) + 1 ) ) = ( M ... N ) ) |
| 28 |
19 27
|
eleqtrd |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( n + 1 ) e. ( M ... N ) ) |
| 29 |
15 17 28
|
rspcdva |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` ( n + 1 ) ) e. RR ) |
| 30 |
9
|
eleq1d |
|- ( k = n -> ( ( F ` k ) e. RR <-> ( F ` n ) e. RR ) ) |
| 31 |
|
fzssp1 |
|- ( M ... ( N - 1 ) ) C_ ( M ... ( ( N - 1 ) + 1 ) ) |
| 32 |
31 26
|
sseqtrid |
|- ( ph -> ( M ... ( N - 1 ) ) C_ ( M ... N ) ) |
| 33 |
32
|
sselda |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> n e. ( M ... N ) ) |
| 34 |
30 17 33
|
rspcdva |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( F ` n ) e. RR ) |
| 35 |
29 34
|
lenegd |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( F ` ( n + 1 ) ) <_ ( F ` n ) <-> -u ( F ` n ) <_ -u ( F ` ( n + 1 ) ) ) ) |
| 36 |
13 35
|
mpbid |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> -u ( F ` n ) <_ -u ( F ` ( n + 1 ) ) ) |
| 37 |
9
|
negeqd |
|- ( k = n -> -u ( F ` k ) = -u ( F ` n ) ) |
| 38 |
|
eqid |
|- ( k e. ( M ... N ) |-> -u ( F ` k ) ) = ( k e. ( M ... N ) |-> -u ( F ` k ) ) |
| 39 |
|
negex |
|- -u ( F ` n ) e. _V |
| 40 |
37 38 39
|
fvmpt |
|- ( n e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) = -u ( F ` n ) ) |
| 41 |
33 40
|
syl |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) = -u ( F ` n ) ) |
| 42 |
14
|
negeqd |
|- ( k = ( n + 1 ) -> -u ( F ` k ) = -u ( F ` ( n + 1 ) ) ) |
| 43 |
|
negex |
|- -u ( F ` ( n + 1 ) ) e. _V |
| 44 |
42 38 43
|
fvmpt |
|- ( ( n + 1 ) e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) = -u ( F ` ( n + 1 ) ) ) |
| 45 |
28 44
|
syl |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) = -u ( F ` ( n + 1 ) ) ) |
| 46 |
36 41 45
|
3brtr4d |
|- ( ( ph /\ n e. ( M ... ( N - 1 ) ) ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` n ) <_ ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` ( n + 1 ) ) ) |
| 47 |
1 6 46
|
monoord |
|- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) <_ ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) ) |
| 48 |
|
eluzfz1 |
|- ( N e. ( ZZ>= ` M ) -> M e. ( M ... N ) ) |
| 49 |
1 48
|
syl |
|- ( ph -> M e. ( M ... N ) ) |
| 50 |
|
fveq2 |
|- ( k = M -> ( F ` k ) = ( F ` M ) ) |
| 51 |
50
|
negeqd |
|- ( k = M -> -u ( F ` k ) = -u ( F ` M ) ) |
| 52 |
|
negex |
|- -u ( F ` M ) e. _V |
| 53 |
51 38 52
|
fvmpt |
|- ( M e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) = -u ( F ` M ) ) |
| 54 |
49 53
|
syl |
|- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` M ) = -u ( F ` M ) ) |
| 55 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
| 56 |
1 55
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
| 57 |
|
fveq2 |
|- ( k = N -> ( F ` k ) = ( F ` N ) ) |
| 58 |
57
|
negeqd |
|- ( k = N -> -u ( F ` k ) = -u ( F ` N ) ) |
| 59 |
|
negex |
|- -u ( F ` N ) e. _V |
| 60 |
58 38 59
|
fvmpt |
|- ( N e. ( M ... N ) -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) = -u ( F ` N ) ) |
| 61 |
56 60
|
syl |
|- ( ph -> ( ( k e. ( M ... N ) |-> -u ( F ` k ) ) ` N ) = -u ( F ` N ) ) |
| 62 |
47 54 61
|
3brtr3d |
|- ( ph -> -u ( F ` M ) <_ -u ( F ` N ) ) |
| 63 |
57
|
eleq1d |
|- ( k = N -> ( ( F ` k ) e. RR <-> ( F ` N ) e. RR ) ) |
| 64 |
63 16 56
|
rspcdva |
|- ( ph -> ( F ` N ) e. RR ) |
| 65 |
50
|
eleq1d |
|- ( k = M -> ( ( F ` k ) e. RR <-> ( F ` M ) e. RR ) ) |
| 66 |
65 16 49
|
rspcdva |
|- ( ph -> ( F ` M ) e. RR ) |
| 67 |
64 66
|
lenegd |
|- ( ph -> ( ( F ` N ) <_ ( F ` M ) <-> -u ( F ` M ) <_ -u ( F ` N ) ) ) |
| 68 |
62 67
|
mpbird |
|- ( ph -> ( F ` N ) <_ ( F ` M ) ) |