| Step | Hyp | Ref | Expression | 
						
							| 1 |  | monoords.fk |  |-  ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) | 
						
							| 2 |  | monoords.flt |  |-  ( ( ph /\ k e. ( M ..^ N ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 3 |  | monoords.i |  |-  ( ph -> I e. ( M ... N ) ) | 
						
							| 4 |  | monoords.j |  |-  ( ph -> J e. ( M ... N ) ) | 
						
							| 5 |  | monoords.iltj |  |-  ( ph -> I < J ) | 
						
							| 6 | 3 | ancli |  |-  ( ph -> ( ph /\ I e. ( M ... N ) ) ) | 
						
							| 7 |  | eleq1 |  |-  ( k = I -> ( k e. ( M ... N ) <-> I e. ( M ... N ) ) ) | 
						
							| 8 | 7 | anbi2d |  |-  ( k = I -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ I e. ( M ... N ) ) ) ) | 
						
							| 9 |  | fveq2 |  |-  ( k = I -> ( F ` k ) = ( F ` I ) ) | 
						
							| 10 | 9 | eleq1d |  |-  ( k = I -> ( ( F ` k ) e. RR <-> ( F ` I ) e. RR ) ) | 
						
							| 11 | 8 10 | imbi12d |  |-  ( k = I -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ I e. ( M ... N ) ) -> ( F ` I ) e. RR ) ) ) | 
						
							| 12 | 11 1 | vtoclg |  |-  ( I e. ( M ... N ) -> ( ( ph /\ I e. ( M ... N ) ) -> ( F ` I ) e. RR ) ) | 
						
							| 13 | 3 6 12 | sylc |  |-  ( ph -> ( F ` I ) e. RR ) | 
						
							| 14 |  | elfzel1 |  |-  ( I e. ( M ... N ) -> M e. ZZ ) | 
						
							| 15 | 3 14 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 16 | 3 | elfzelzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 17 |  | elfzle1 |  |-  ( I e. ( M ... N ) -> M <_ I ) | 
						
							| 18 | 3 17 | syl |  |-  ( ph -> M <_ I ) | 
						
							| 19 |  | eluz2 |  |-  ( I e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ I e. ZZ /\ M <_ I ) ) | 
						
							| 20 | 15 16 18 19 | syl3anbrc |  |-  ( ph -> I e. ( ZZ>= ` M ) ) | 
						
							| 21 |  | elfzuz2 |  |-  ( I e. ( M ... N ) -> N e. ( ZZ>= ` M ) ) | 
						
							| 22 | 3 21 | syl |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 23 |  | eluzelz |  |-  ( N e. ( ZZ>= ` M ) -> N e. ZZ ) | 
						
							| 24 | 22 23 | syl |  |-  ( ph -> N e. ZZ ) | 
						
							| 25 | 16 | zred |  |-  ( ph -> I e. RR ) | 
						
							| 26 | 4 | elfzelzd |  |-  ( ph -> J e. ZZ ) | 
						
							| 27 | 26 | zred |  |-  ( ph -> J e. RR ) | 
						
							| 28 | 24 | zred |  |-  ( ph -> N e. RR ) | 
						
							| 29 |  | elfzle2 |  |-  ( J e. ( M ... N ) -> J <_ N ) | 
						
							| 30 | 4 29 | syl |  |-  ( ph -> J <_ N ) | 
						
							| 31 | 25 27 28 5 30 | ltletrd |  |-  ( ph -> I < N ) | 
						
							| 32 |  | elfzo2 |  |-  ( I e. ( M ..^ N ) <-> ( I e. ( ZZ>= ` M ) /\ N e. ZZ /\ I < N ) ) | 
						
							| 33 | 20 24 31 32 | syl3anbrc |  |-  ( ph -> I e. ( M ..^ N ) ) | 
						
							| 34 |  | fzofzp1 |  |-  ( I e. ( M ..^ N ) -> ( I + 1 ) e. ( M ... N ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( ph -> ( I + 1 ) e. ( M ... N ) ) | 
						
							| 36 | 35 | ancli |  |-  ( ph -> ( ph /\ ( I + 1 ) e. ( M ... N ) ) ) | 
						
							| 37 |  | eleq1 |  |-  ( k = ( I + 1 ) -> ( k e. ( M ... N ) <-> ( I + 1 ) e. ( M ... N ) ) ) | 
						
							| 38 | 37 | anbi2d |  |-  ( k = ( I + 1 ) -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ ( I + 1 ) e. ( M ... N ) ) ) ) | 
						
							| 39 |  | fveq2 |  |-  ( k = ( I + 1 ) -> ( F ` k ) = ( F ` ( I + 1 ) ) ) | 
						
							| 40 | 39 | eleq1d |  |-  ( k = ( I + 1 ) -> ( ( F ` k ) e. RR <-> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 41 | 38 40 | imbi12d |  |-  ( k = ( I + 1 ) -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ ( I + 1 ) e. ( M ... N ) ) -> ( F ` ( I + 1 ) ) e. RR ) ) ) | 
						
							| 42 | 41 1 | vtoclg |  |-  ( ( I + 1 ) e. ( M ... N ) -> ( ( ph /\ ( I + 1 ) e. ( M ... N ) ) -> ( F ` ( I + 1 ) ) e. RR ) ) | 
						
							| 43 | 35 36 42 | sylc |  |-  ( ph -> ( F ` ( I + 1 ) ) e. RR ) | 
						
							| 44 | 4 | ancli |  |-  ( ph -> ( ph /\ J e. ( M ... N ) ) ) | 
						
							| 45 |  | eleq1 |  |-  ( k = J -> ( k e. ( M ... N ) <-> J e. ( M ... N ) ) ) | 
						
							| 46 | 45 | anbi2d |  |-  ( k = J -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ J e. ( M ... N ) ) ) ) | 
						
							| 47 |  | fveq2 |  |-  ( k = J -> ( F ` k ) = ( F ` J ) ) | 
						
							| 48 | 47 | eleq1d |  |-  ( k = J -> ( ( F ` k ) e. RR <-> ( F ` J ) e. RR ) ) | 
						
							| 49 | 46 48 | imbi12d |  |-  ( k = J -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ J e. ( M ... N ) ) -> ( F ` J ) e. RR ) ) ) | 
						
							| 50 | 49 1 | vtoclg |  |-  ( J e. ( M ... N ) -> ( ( ph /\ J e. ( M ... N ) ) -> ( F ` J ) e. RR ) ) | 
						
							| 51 | 4 44 50 | sylc |  |-  ( ph -> ( F ` J ) e. RR ) | 
						
							| 52 | 33 | ancli |  |-  ( ph -> ( ph /\ I e. ( M ..^ N ) ) ) | 
						
							| 53 |  | eleq1 |  |-  ( k = I -> ( k e. ( M ..^ N ) <-> I e. ( M ..^ N ) ) ) | 
						
							| 54 | 53 | anbi2d |  |-  ( k = I -> ( ( ph /\ k e. ( M ..^ N ) ) <-> ( ph /\ I e. ( M ..^ N ) ) ) ) | 
						
							| 55 |  | fvoveq1 |  |-  ( k = I -> ( F ` ( k + 1 ) ) = ( F ` ( I + 1 ) ) ) | 
						
							| 56 | 9 55 | breq12d |  |-  ( k = I -> ( ( F ` k ) < ( F ` ( k + 1 ) ) <-> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) | 
						
							| 57 | 54 56 | imbi12d |  |-  ( k = I -> ( ( ( ph /\ k e. ( M ..^ N ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) <-> ( ( ph /\ I e. ( M ..^ N ) ) -> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) ) | 
						
							| 58 | 57 2 | vtoclg |  |-  ( I e. ( M ..^ N ) -> ( ( ph /\ I e. ( M ..^ N ) ) -> ( F ` I ) < ( F ` ( I + 1 ) ) ) ) | 
						
							| 59 | 33 52 58 | sylc |  |-  ( ph -> ( F ` I ) < ( F ` ( I + 1 ) ) ) | 
						
							| 60 | 16 | peano2zd |  |-  ( ph -> ( I + 1 ) e. ZZ ) | 
						
							| 61 |  | zltp1le |  |-  ( ( I e. ZZ /\ J e. ZZ ) -> ( I < J <-> ( I + 1 ) <_ J ) ) | 
						
							| 62 | 16 26 61 | syl2anc |  |-  ( ph -> ( I < J <-> ( I + 1 ) <_ J ) ) | 
						
							| 63 | 5 62 | mpbid |  |-  ( ph -> ( I + 1 ) <_ J ) | 
						
							| 64 |  | eluz2 |  |-  ( J e. ( ZZ>= ` ( I + 1 ) ) <-> ( ( I + 1 ) e. ZZ /\ J e. ZZ /\ ( I + 1 ) <_ J ) ) | 
						
							| 65 | 60 26 63 64 | syl3anbrc |  |-  ( ph -> J e. ( ZZ>= ` ( I + 1 ) ) ) | 
						
							| 66 | 15 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M e. ZZ ) | 
						
							| 67 | 24 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> N e. ZZ ) | 
						
							| 68 |  | elfzelz |  |-  ( k e. ( ( I + 1 ) ... J ) -> k e. ZZ ) | 
						
							| 69 | 68 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. ZZ ) | 
						
							| 70 | 66 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M e. RR ) | 
						
							| 71 | 69 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. RR ) | 
						
							| 72 | 60 | zred |  |-  ( ph -> ( I + 1 ) e. RR ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( I + 1 ) e. RR ) | 
						
							| 74 | 25 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> I e. RR ) | 
						
							| 75 | 18 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M <_ I ) | 
						
							| 76 | 74 | ltp1d |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> I < ( I + 1 ) ) | 
						
							| 77 | 70 74 73 75 76 | lelttrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M < ( I + 1 ) ) | 
						
							| 78 |  | elfzle1 |  |-  ( k e. ( ( I + 1 ) ... J ) -> ( I + 1 ) <_ k ) | 
						
							| 79 | 78 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( I + 1 ) <_ k ) | 
						
							| 80 | 70 73 71 77 79 | ltletrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M < k ) | 
						
							| 81 | 70 71 80 | ltled |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> M <_ k ) | 
						
							| 82 | 27 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> J e. RR ) | 
						
							| 83 | 67 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> N e. RR ) | 
						
							| 84 |  | elfzle2 |  |-  ( k e. ( ( I + 1 ) ... J ) -> k <_ J ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k <_ J ) | 
						
							| 86 | 30 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> J <_ N ) | 
						
							| 87 | 71 82 83 85 86 | letrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k <_ N ) | 
						
							| 88 | 66 67 69 81 87 | elfzd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> k e. ( M ... N ) ) | 
						
							| 89 | 88 1 | syldan |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... J ) ) -> ( F ` k ) e. RR ) | 
						
							| 90 | 15 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M e. ZZ ) | 
						
							| 91 | 24 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> N e. ZZ ) | 
						
							| 92 |  | elfzelz |  |-  ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> k e. ZZ ) | 
						
							| 93 | 92 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ZZ ) | 
						
							| 94 | 90 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M e. RR ) | 
						
							| 95 | 93 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. RR ) | 
						
							| 96 | 72 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( I + 1 ) e. RR ) | 
						
							| 97 | 15 | zred |  |-  ( ph -> M e. RR ) | 
						
							| 98 | 25 | ltp1d |  |-  ( ph -> I < ( I + 1 ) ) | 
						
							| 99 | 97 25 72 18 98 | lelttrd |  |-  ( ph -> M < ( I + 1 ) ) | 
						
							| 100 | 99 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M < ( I + 1 ) ) | 
						
							| 101 |  | elfzle1 |  |-  ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> ( I + 1 ) <_ k ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( I + 1 ) <_ k ) | 
						
							| 103 | 94 96 95 100 102 | ltletrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M < k ) | 
						
							| 104 | 94 95 103 | ltled |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> M <_ k ) | 
						
							| 105 | 91 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> N e. RR ) | 
						
							| 106 |  | peano2rem |  |-  ( J e. RR -> ( J - 1 ) e. RR ) | 
						
							| 107 | 27 106 | syl |  |-  ( ph -> ( J - 1 ) e. RR ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) e. RR ) | 
						
							| 109 |  | elfzle2 |  |-  ( k e. ( ( I + 1 ) ... ( J - 1 ) ) -> k <_ ( J - 1 ) ) | 
						
							| 110 | 109 | adantl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ ( J - 1 ) ) | 
						
							| 111 | 27 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> J e. RR ) | 
						
							| 112 | 111 | ltm1d |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) < J ) | 
						
							| 113 | 30 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> J <_ N ) | 
						
							| 114 | 108 111 105 112 113 | ltletrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) < N ) | 
						
							| 115 | 95 108 105 110 114 | lelttrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k < N ) | 
						
							| 116 | 95 105 115 | ltled |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ N ) | 
						
							| 117 | 90 91 93 104 116 | elfzd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ( M ... N ) ) | 
						
							| 118 | 117 1 | syldan |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) e. RR ) | 
						
							| 119 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 120 | 91 119 | syl |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( N - 1 ) e. ZZ ) | 
						
							| 121 | 120 | zred |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( N - 1 ) e. RR ) | 
						
							| 122 |  | 1red |  |-  ( ph -> 1 e. RR ) | 
						
							| 123 | 27 28 122 30 | lesub1dd |  |-  ( ph -> ( J - 1 ) <_ ( N - 1 ) ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( J - 1 ) <_ ( N - 1 ) ) | 
						
							| 125 | 95 108 121 110 124 | letrd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k <_ ( N - 1 ) ) | 
						
							| 126 | 90 120 93 104 125 | elfzd |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> k e. ( M ... ( N - 1 ) ) ) | 
						
							| 127 |  | simpr |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ... ( N - 1 ) ) ) | 
						
							| 128 |  | fzoval |  |-  ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) | 
						
							| 129 | 24 128 | syl |  |-  ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) | 
						
							| 130 | 129 | eqcomd |  |-  ( ph -> ( M ... ( N - 1 ) ) = ( M ..^ N ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( M ... ( N - 1 ) ) = ( M ..^ N ) ) | 
						
							| 132 | 127 131 | eleqtrd |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> k e. ( M ..^ N ) ) | 
						
							| 133 |  | fzofzp1 |  |-  ( k e. ( M ..^ N ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 134 | 132 133 | syl |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( k + 1 ) e. ( M ... N ) ) | 
						
							| 135 |  | simpl |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ph ) | 
						
							| 136 | 135 134 | jca |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( ph /\ ( k + 1 ) e. ( M ... N ) ) ) | 
						
							| 137 |  | eleq1 |  |-  ( j = ( k + 1 ) -> ( j e. ( M ... N ) <-> ( k + 1 ) e. ( M ... N ) ) ) | 
						
							| 138 | 137 | anbi2d |  |-  ( j = ( k + 1 ) -> ( ( ph /\ j e. ( M ... N ) ) <-> ( ph /\ ( k + 1 ) e. ( M ... N ) ) ) ) | 
						
							| 139 |  | fveq2 |  |-  ( j = ( k + 1 ) -> ( F ` j ) = ( F ` ( k + 1 ) ) ) | 
						
							| 140 | 139 | eleq1d |  |-  ( j = ( k + 1 ) -> ( ( F ` j ) e. RR <-> ( F ` ( k + 1 ) ) e. RR ) ) | 
						
							| 141 | 138 140 | imbi12d |  |-  ( j = ( k + 1 ) -> ( ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) <-> ( ( ph /\ ( k + 1 ) e. ( M ... N ) ) -> ( F ` ( k + 1 ) ) e. RR ) ) ) | 
						
							| 142 |  | eleq1 |  |-  ( k = j -> ( k e. ( M ... N ) <-> j e. ( M ... N ) ) ) | 
						
							| 143 | 142 | anbi2d |  |-  ( k = j -> ( ( ph /\ k e. ( M ... N ) ) <-> ( ph /\ j e. ( M ... N ) ) ) ) | 
						
							| 144 |  | fveq2 |  |-  ( k = j -> ( F ` k ) = ( F ` j ) ) | 
						
							| 145 | 144 | eleq1d |  |-  ( k = j -> ( ( F ` k ) e. RR <-> ( F ` j ) e. RR ) ) | 
						
							| 146 | 143 145 | imbi12d |  |-  ( k = j -> ( ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. RR ) <-> ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) ) ) | 
						
							| 147 | 146 1 | chvarvv |  |-  ( ( ph /\ j e. ( M ... N ) ) -> ( F ` j ) e. RR ) | 
						
							| 148 | 141 147 | vtoclg |  |-  ( ( k + 1 ) e. ( M ... N ) -> ( ( ph /\ ( k + 1 ) e. ( M ... N ) ) -> ( F ` ( k + 1 ) ) e. RR ) ) | 
						
							| 149 | 134 136 148 | sylc |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) | 
						
							| 150 | 126 149 | syldan |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` ( k + 1 ) ) e. RR ) | 
						
							| 151 | 132 2 | syldan |  |-  ( ( ph /\ k e. ( M ... ( N - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 152 | 126 151 | syldan |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) < ( F ` ( k + 1 ) ) ) | 
						
							| 153 | 118 150 152 | ltled |  |-  ( ( ph /\ k e. ( ( I + 1 ) ... ( J - 1 ) ) ) -> ( F ` k ) <_ ( F ` ( k + 1 ) ) ) | 
						
							| 154 | 65 89 153 | monoord |  |-  ( ph -> ( F ` ( I + 1 ) ) <_ ( F ` J ) ) | 
						
							| 155 | 13 43 51 59 154 | ltletrd |  |-  ( ph -> ( F ` I ) < ( F ` J ) ) |