Step |
Hyp |
Ref |
Expression |
1 |
|
monotoddzzfi.1 |
|- ( ( ph /\ x e. ZZ ) -> ( F ` x ) e. RR ) |
2 |
|
monotoddzzfi.2 |
|- ( ( ph /\ x e. ZZ ) -> ( F ` -u x ) = -u ( F ` x ) ) |
3 |
|
monotoddzzfi.3 |
|- ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( F ` x ) < ( F ` y ) ) ) |
4 |
|
fveq2 |
|- ( a = b -> ( F ` a ) = ( F ` b ) ) |
5 |
|
fveq2 |
|- ( a = A -> ( F ` a ) = ( F ` A ) ) |
6 |
|
fveq2 |
|- ( a = B -> ( F ` a ) = ( F ` B ) ) |
7 |
|
zssre |
|- ZZ C_ RR |
8 |
|
eleq1 |
|- ( x = a -> ( x e. ZZ <-> a e. ZZ ) ) |
9 |
8
|
anbi2d |
|- ( x = a -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ a e. ZZ ) ) ) |
10 |
|
fveq2 |
|- ( x = a -> ( F ` x ) = ( F ` a ) ) |
11 |
10
|
eleq1d |
|- ( x = a -> ( ( F ` x ) e. RR <-> ( F ` a ) e. RR ) ) |
12 |
9 11
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. ZZ ) -> ( F ` x ) e. RR ) <-> ( ( ph /\ a e. ZZ ) -> ( F ` a ) e. RR ) ) ) |
13 |
12 1
|
chvarvv |
|- ( ( ph /\ a e. ZZ ) -> ( F ` a ) e. RR ) |
14 |
|
elznn |
|- ( a e. ZZ <-> ( a e. RR /\ ( a e. NN \/ -u a e. NN0 ) ) ) |
15 |
14
|
simprbi |
|- ( a e. ZZ -> ( a e. NN \/ -u a e. NN0 ) ) |
16 |
|
elznn |
|- ( b e. ZZ <-> ( b e. RR /\ ( b e. NN \/ -u b e. NN0 ) ) ) |
17 |
16
|
simprbi |
|- ( b e. ZZ -> ( b e. NN \/ -u b e. NN0 ) ) |
18 |
15 17
|
anim12i |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( a e. NN \/ -u a e. NN0 ) /\ ( b e. NN \/ -u b e. NN0 ) ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a e. NN \/ -u a e. NN0 ) /\ ( b e. NN \/ -u b e. NN0 ) ) ) |
20 |
|
simpll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ b e. NN ) ) -> ph ) |
21 |
|
nnnn0 |
|- ( a e. NN -> a e. NN0 ) |
22 |
21
|
ad2antrl |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ b e. NN ) ) -> a e. NN0 ) |
23 |
|
nnnn0 |
|- ( b e. NN -> b e. NN0 ) |
24 |
23
|
ad2antll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ b e. NN ) ) -> b e. NN0 ) |
25 |
|
vex |
|- a e. _V |
26 |
|
vex |
|- b e. _V |
27 |
|
simpl |
|- ( ( x = a /\ y = b ) -> x = a ) |
28 |
27
|
eleq1d |
|- ( ( x = a /\ y = b ) -> ( x e. NN0 <-> a e. NN0 ) ) |
29 |
|
simpr |
|- ( ( x = a /\ y = b ) -> y = b ) |
30 |
29
|
eleq1d |
|- ( ( x = a /\ y = b ) -> ( y e. NN0 <-> b e. NN0 ) ) |
31 |
28 30
|
3anbi23d |
|- ( ( x = a /\ y = b ) -> ( ( ph /\ x e. NN0 /\ y e. NN0 ) <-> ( ph /\ a e. NN0 /\ b e. NN0 ) ) ) |
32 |
|
breq12 |
|- ( ( x = a /\ y = b ) -> ( x < y <-> a < b ) ) |
33 |
|
fveq2 |
|- ( y = b -> ( F ` y ) = ( F ` b ) ) |
34 |
10 33
|
breqan12d |
|- ( ( x = a /\ y = b ) -> ( ( F ` x ) < ( F ` y ) <-> ( F ` a ) < ( F ` b ) ) ) |
35 |
32 34
|
imbi12d |
|- ( ( x = a /\ y = b ) -> ( ( x < y -> ( F ` x ) < ( F ` y ) ) <-> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
36 |
31 35
|
imbi12d |
|- ( ( x = a /\ y = b ) -> ( ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( F ` x ) < ( F ` y ) ) ) <-> ( ( ph /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) ) |
37 |
25 26 36 3
|
vtocl2 |
|- ( ( ph /\ a e. NN0 /\ b e. NN0 ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) |
38 |
20 22 24 37
|
syl3anc |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ b e. NN ) ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) |
39 |
38
|
ex |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a e. NN /\ b e. NN ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
40 |
13
|
adantrr |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` a ) e. RR ) |
41 |
40
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` a ) e. RR ) |
42 |
|
0red |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 e. RR ) |
43 |
|
eleq1 |
|- ( x = b -> ( x e. ZZ <-> b e. ZZ ) ) |
44 |
43
|
anbi2d |
|- ( x = b -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ b e. ZZ ) ) ) |
45 |
|
fveq2 |
|- ( x = b -> ( F ` x ) = ( F ` b ) ) |
46 |
45
|
eleq1d |
|- ( x = b -> ( ( F ` x ) e. RR <-> ( F ` b ) e. RR ) ) |
47 |
44 46
|
imbi12d |
|- ( x = b -> ( ( ( ph /\ x e. ZZ ) -> ( F ` x ) e. RR ) <-> ( ( ph /\ b e. ZZ ) -> ( F ` b ) e. RR ) ) ) |
48 |
47 1
|
chvarvv |
|- ( ( ph /\ b e. ZZ ) -> ( F ` b ) e. RR ) |
49 |
48
|
adantrl |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` b ) e. RR ) |
50 |
49
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` b ) e. RR ) |
51 |
|
0red |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> 0 e. RR ) |
52 |
|
znegcl |
|- ( a e. ZZ -> -u a e. ZZ ) |
53 |
52
|
ad2antrl |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> -u a e. ZZ ) |
54 |
|
negex |
|- -u a e. _V |
55 |
|
eleq1 |
|- ( x = -u a -> ( x e. ZZ <-> -u a e. ZZ ) ) |
56 |
55
|
anbi2d |
|- ( x = -u a -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ -u a e. ZZ ) ) ) |
57 |
|
fveq2 |
|- ( x = -u a -> ( F ` x ) = ( F ` -u a ) ) |
58 |
57
|
eleq1d |
|- ( x = -u a -> ( ( F ` x ) e. RR <-> ( F ` -u a ) e. RR ) ) |
59 |
56 58
|
imbi12d |
|- ( x = -u a -> ( ( ( ph /\ x e. ZZ ) -> ( F ` x ) e. RR ) <-> ( ( ph /\ -u a e. ZZ ) -> ( F ` -u a ) e. RR ) ) ) |
60 |
54 59 1
|
vtocl |
|- ( ( ph /\ -u a e. ZZ ) -> ( F ` -u a ) e. RR ) |
61 |
53 60
|
syldan |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` -u a ) e. RR ) |
62 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> ( F ` -u a ) e. RR ) |
63 |
|
0z |
|- 0 e. ZZ |
64 |
|
c0ex |
|- 0 e. _V |
65 |
|
eleq1 |
|- ( x = 0 -> ( x e. ZZ <-> 0 e. ZZ ) ) |
66 |
65
|
anbi2d |
|- ( x = 0 -> ( ( ph /\ x e. ZZ ) <-> ( ph /\ 0 e. ZZ ) ) ) |
67 |
|
fveq2 |
|- ( x = 0 -> ( F ` x ) = ( F ` 0 ) ) |
68 |
67
|
eleq1d |
|- ( x = 0 -> ( ( F ` x ) e. RR <-> ( F ` 0 ) e. RR ) ) |
69 |
66 68
|
imbi12d |
|- ( x = 0 -> ( ( ( ph /\ x e. ZZ ) -> ( F ` x ) e. RR ) <-> ( ( ph /\ 0 e. ZZ ) -> ( F ` 0 ) e. RR ) ) ) |
70 |
64 69 1
|
vtocl |
|- ( ( ph /\ 0 e. ZZ ) -> ( F ` 0 ) e. RR ) |
71 |
63 70
|
mpan2 |
|- ( ph -> ( F ` 0 ) e. RR ) |
72 |
71
|
recnd |
|- ( ph -> ( F ` 0 ) e. CC ) |
73 |
|
neg0 |
|- -u 0 = 0 |
74 |
73
|
fveq2i |
|- ( F ` -u 0 ) = ( F ` 0 ) |
75 |
|
negeq |
|- ( x = 0 -> -u x = -u 0 ) |
76 |
75
|
fveq2d |
|- ( x = 0 -> ( F ` -u x ) = ( F ` -u 0 ) ) |
77 |
67
|
negeqd |
|- ( x = 0 -> -u ( F ` x ) = -u ( F ` 0 ) ) |
78 |
76 77
|
eqeq12d |
|- ( x = 0 -> ( ( F ` -u x ) = -u ( F ` x ) <-> ( F ` -u 0 ) = -u ( F ` 0 ) ) ) |
79 |
66 78
|
imbi12d |
|- ( x = 0 -> ( ( ( ph /\ x e. ZZ ) -> ( F ` -u x ) = -u ( F ` x ) ) <-> ( ( ph /\ 0 e. ZZ ) -> ( F ` -u 0 ) = -u ( F ` 0 ) ) ) ) |
80 |
64 79 2
|
vtocl |
|- ( ( ph /\ 0 e. ZZ ) -> ( F ` -u 0 ) = -u ( F ` 0 ) ) |
81 |
63 80
|
mpan2 |
|- ( ph -> ( F ` -u 0 ) = -u ( F ` 0 ) ) |
82 |
74 81
|
eqtr3id |
|- ( ph -> ( F ` 0 ) = -u ( F ` 0 ) ) |
83 |
72 82
|
eqnegad |
|- ( ph -> ( F ` 0 ) = 0 ) |
84 |
83
|
adantr |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` 0 ) = 0 ) |
85 |
84
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> ( F ` 0 ) = 0 ) |
86 |
|
nngt0 |
|- ( -u a e. NN -> 0 < -u a ) |
87 |
86
|
adantl |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> 0 < -u a ) |
88 |
|
simplll |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> ph ) |
89 |
|
0nn0 |
|- 0 e. NN0 |
90 |
89
|
a1i |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> 0 e. NN0 ) |
91 |
|
simplrl |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> -u a e. NN0 ) |
92 |
|
simpl |
|- ( ( x = 0 /\ y = -u a ) -> x = 0 ) |
93 |
92
|
eleq1d |
|- ( ( x = 0 /\ y = -u a ) -> ( x e. NN0 <-> 0 e. NN0 ) ) |
94 |
|
simpr |
|- ( ( x = 0 /\ y = -u a ) -> y = -u a ) |
95 |
94
|
eleq1d |
|- ( ( x = 0 /\ y = -u a ) -> ( y e. NN0 <-> -u a e. NN0 ) ) |
96 |
93 95
|
3anbi23d |
|- ( ( x = 0 /\ y = -u a ) -> ( ( ph /\ x e. NN0 /\ y e. NN0 ) <-> ( ph /\ 0 e. NN0 /\ -u a e. NN0 ) ) ) |
97 |
|
breq12 |
|- ( ( x = 0 /\ y = -u a ) -> ( x < y <-> 0 < -u a ) ) |
98 |
92
|
fveq2d |
|- ( ( x = 0 /\ y = -u a ) -> ( F ` x ) = ( F ` 0 ) ) |
99 |
94
|
fveq2d |
|- ( ( x = 0 /\ y = -u a ) -> ( F ` y ) = ( F ` -u a ) ) |
100 |
98 99
|
breq12d |
|- ( ( x = 0 /\ y = -u a ) -> ( ( F ` x ) < ( F ` y ) <-> ( F ` 0 ) < ( F ` -u a ) ) ) |
101 |
97 100
|
imbi12d |
|- ( ( x = 0 /\ y = -u a ) -> ( ( x < y -> ( F ` x ) < ( F ` y ) ) <-> ( 0 < -u a -> ( F ` 0 ) < ( F ` -u a ) ) ) ) |
102 |
96 101
|
imbi12d |
|- ( ( x = 0 /\ y = -u a ) -> ( ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( F ` x ) < ( F ` y ) ) ) <-> ( ( ph /\ 0 e. NN0 /\ -u a e. NN0 ) -> ( 0 < -u a -> ( F ` 0 ) < ( F ` -u a ) ) ) ) ) |
103 |
64 54 102 3
|
vtocl2 |
|- ( ( ph /\ 0 e. NN0 /\ -u a e. NN0 ) -> ( 0 < -u a -> ( F ` 0 ) < ( F ` -u a ) ) ) |
104 |
88 90 91 103
|
syl3anc |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> ( 0 < -u a -> ( F ` 0 ) < ( F ` -u a ) ) ) |
105 |
87 104
|
mpd |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> ( F ` 0 ) < ( F ` -u a ) ) |
106 |
85 105
|
eqbrtrrd |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> 0 < ( F ` -u a ) ) |
107 |
51 62 106
|
ltled |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a e. NN ) -> 0 <_ ( F ` -u a ) ) |
108 |
|
0le0 |
|- 0 <_ 0 |
109 |
84
|
ad2antrr |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a = 0 ) -> ( F ` 0 ) = 0 ) |
110 |
108 109
|
breqtrrid |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a = 0 ) -> 0 <_ ( F ` 0 ) ) |
111 |
|
fveq2 |
|- ( -u a = 0 -> ( F ` -u a ) = ( F ` 0 ) ) |
112 |
111
|
breq2d |
|- ( -u a = 0 -> ( 0 <_ ( F ` -u a ) <-> 0 <_ ( F ` 0 ) ) ) |
113 |
112
|
adantl |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a = 0 ) -> ( 0 <_ ( F ` -u a ) <-> 0 <_ ( F ` 0 ) ) ) |
114 |
110 113
|
mpbird |
|- ( ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) /\ -u a = 0 ) -> 0 <_ ( F ` -u a ) ) |
115 |
|
elnn0 |
|- ( -u a e. NN0 <-> ( -u a e. NN \/ -u a = 0 ) ) |
116 |
115
|
biimpi |
|- ( -u a e. NN0 -> ( -u a e. NN \/ -u a = 0 ) ) |
117 |
116
|
ad2antrl |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( -u a e. NN \/ -u a = 0 ) ) |
118 |
107 114 117
|
mpjaodan |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 <_ ( F ` -u a ) ) |
119 |
|
negeq |
|- ( x = a -> -u x = -u a ) |
120 |
119
|
fveq2d |
|- ( x = a -> ( F ` -u x ) = ( F ` -u a ) ) |
121 |
10
|
negeqd |
|- ( x = a -> -u ( F ` x ) = -u ( F ` a ) ) |
122 |
120 121
|
eqeq12d |
|- ( x = a -> ( ( F ` -u x ) = -u ( F ` x ) <-> ( F ` -u a ) = -u ( F ` a ) ) ) |
123 |
9 122
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. ZZ ) -> ( F ` -u x ) = -u ( F ` x ) ) <-> ( ( ph /\ a e. ZZ ) -> ( F ` -u a ) = -u ( F ` a ) ) ) ) |
124 |
123 2
|
chvarvv |
|- ( ( ph /\ a e. ZZ ) -> ( F ` -u a ) = -u ( F ` a ) ) |
125 |
124
|
adantrr |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` -u a ) = -u ( F ` a ) ) |
126 |
125
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` -u a ) = -u ( F ` a ) ) |
127 |
118 126
|
breqtrd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 <_ -u ( F ` a ) ) |
128 |
41
|
le0neg1d |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( ( F ` a ) <_ 0 <-> 0 <_ -u ( F ` a ) ) ) |
129 |
127 128
|
mpbird |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` a ) <_ 0 ) |
130 |
84
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` 0 ) = 0 ) |
131 |
|
nngt0 |
|- ( b e. NN -> 0 < b ) |
132 |
131
|
ad2antll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 < b ) |
133 |
|
simpll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ph ) |
134 |
89
|
a1i |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 e. NN0 ) |
135 |
23
|
ad2antll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> b e. NN0 ) |
136 |
|
simpl |
|- ( ( x = 0 /\ y = b ) -> x = 0 ) |
137 |
136
|
eleq1d |
|- ( ( x = 0 /\ y = b ) -> ( x e. NN0 <-> 0 e. NN0 ) ) |
138 |
|
simpr |
|- ( ( x = 0 /\ y = b ) -> y = b ) |
139 |
138
|
eleq1d |
|- ( ( x = 0 /\ y = b ) -> ( y e. NN0 <-> b e. NN0 ) ) |
140 |
137 139
|
3anbi23d |
|- ( ( x = 0 /\ y = b ) -> ( ( ph /\ x e. NN0 /\ y e. NN0 ) <-> ( ph /\ 0 e. NN0 /\ b e. NN0 ) ) ) |
141 |
|
breq12 |
|- ( ( x = 0 /\ y = b ) -> ( x < y <-> 0 < b ) ) |
142 |
67 33
|
breqan12d |
|- ( ( x = 0 /\ y = b ) -> ( ( F ` x ) < ( F ` y ) <-> ( F ` 0 ) < ( F ` b ) ) ) |
143 |
141 142
|
imbi12d |
|- ( ( x = 0 /\ y = b ) -> ( ( x < y -> ( F ` x ) < ( F ` y ) ) <-> ( 0 < b -> ( F ` 0 ) < ( F ` b ) ) ) ) |
144 |
140 143
|
imbi12d |
|- ( ( x = 0 /\ y = b ) -> ( ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( F ` x ) < ( F ` y ) ) ) <-> ( ( ph /\ 0 e. NN0 /\ b e. NN0 ) -> ( 0 < b -> ( F ` 0 ) < ( F ` b ) ) ) ) ) |
145 |
64 26 144 3
|
vtocl2 |
|- ( ( ph /\ 0 e. NN0 /\ b e. NN0 ) -> ( 0 < b -> ( F ` 0 ) < ( F ` b ) ) ) |
146 |
133 134 135 145
|
syl3anc |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( 0 < b -> ( F ` 0 ) < ( F ` b ) ) ) |
147 |
132 146
|
mpd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` 0 ) < ( F ` b ) ) |
148 |
130 147
|
eqbrtrrd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> 0 < ( F ` b ) ) |
149 |
41 42 50 129 148
|
lelttrd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( F ` a ) < ( F ` b ) ) |
150 |
149
|
a1d |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ b e. NN ) ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) |
151 |
150
|
ex |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( -u a e. NN0 /\ b e. NN ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
152 |
|
simp3 |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) /\ a < b ) -> a < b ) |
153 |
|
zre |
|- ( b e. ZZ -> b e. RR ) |
154 |
153
|
adantl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> b e. RR ) |
155 |
154
|
ad2antlr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> b e. RR ) |
156 |
|
1red |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> 1 e. RR ) |
157 |
|
nnre |
|- ( a e. NN -> a e. RR ) |
158 |
157
|
ad2antrl |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> a e. RR ) |
159 |
|
0red |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> 0 e. RR ) |
160 |
|
nn0ge0 |
|- ( -u b e. NN0 -> 0 <_ -u b ) |
161 |
160
|
ad2antll |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> 0 <_ -u b ) |
162 |
155
|
le0neg1d |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> ( b <_ 0 <-> 0 <_ -u b ) ) |
163 |
161 162
|
mpbird |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> b <_ 0 ) |
164 |
|
0le1 |
|- 0 <_ 1 |
165 |
164
|
a1i |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> 0 <_ 1 ) |
166 |
155 159 156 163 165
|
letrd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> b <_ 1 ) |
167 |
|
nnge1 |
|- ( a e. NN -> 1 <_ a ) |
168 |
167
|
ad2antrl |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> 1 <_ a ) |
169 |
155 156 158 166 168
|
letrd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> b <_ a ) |
170 |
155 158
|
lenltd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> ( b <_ a <-> -. a < b ) ) |
171 |
169 170
|
mpbid |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) ) -> -. a < b ) |
172 |
171
|
3adant3 |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) /\ a < b ) -> -. a < b ) |
173 |
152 172
|
pm2.21dd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( a e. NN /\ -u b e. NN0 ) /\ a < b ) -> ( F ` a ) < ( F ` b ) ) |
174 |
173
|
3exp |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( a e. NN /\ -u b e. NN0 ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
175 |
|
negex |
|- -u b e. _V |
176 |
|
simpl |
|- ( ( x = -u b /\ y = -u a ) -> x = -u b ) |
177 |
176
|
eleq1d |
|- ( ( x = -u b /\ y = -u a ) -> ( x e. NN0 <-> -u b e. NN0 ) ) |
178 |
|
simpr |
|- ( ( x = -u b /\ y = -u a ) -> y = -u a ) |
179 |
178
|
eleq1d |
|- ( ( x = -u b /\ y = -u a ) -> ( y e. NN0 <-> -u a e. NN0 ) ) |
180 |
177 179
|
3anbi23d |
|- ( ( x = -u b /\ y = -u a ) -> ( ( ph /\ x e. NN0 /\ y e. NN0 ) <-> ( ph /\ -u b e. NN0 /\ -u a e. NN0 ) ) ) |
181 |
|
breq12 |
|- ( ( x = -u b /\ y = -u a ) -> ( x < y <-> -u b < -u a ) ) |
182 |
|
fveq2 |
|- ( x = -u b -> ( F ` x ) = ( F ` -u b ) ) |
183 |
|
fveq2 |
|- ( y = -u a -> ( F ` y ) = ( F ` -u a ) ) |
184 |
182 183
|
breqan12d |
|- ( ( x = -u b /\ y = -u a ) -> ( ( F ` x ) < ( F ` y ) <-> ( F ` -u b ) < ( F ` -u a ) ) ) |
185 |
181 184
|
imbi12d |
|- ( ( x = -u b /\ y = -u a ) -> ( ( x < y -> ( F ` x ) < ( F ` y ) ) <-> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) ) |
186 |
180 185
|
imbi12d |
|- ( ( x = -u b /\ y = -u a ) -> ( ( ( ph /\ x e. NN0 /\ y e. NN0 ) -> ( x < y -> ( F ` x ) < ( F ` y ) ) ) <-> ( ( ph /\ -u b e. NN0 /\ -u a e. NN0 ) -> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) ) ) |
187 |
175 54 186 3
|
vtocl2 |
|- ( ( ph /\ -u b e. NN0 /\ -u a e. NN0 ) -> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) |
188 |
187
|
3com23 |
|- ( ( ph /\ -u a e. NN0 /\ -u b e. NN0 ) -> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) |
189 |
188
|
3expb |
|- ( ( ph /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) |
190 |
189
|
adantlr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( -u b < -u a -> ( F ` -u b ) < ( F ` -u a ) ) ) |
191 |
|
negeq |
|- ( x = b -> -u x = -u b ) |
192 |
191
|
fveq2d |
|- ( x = b -> ( F ` -u x ) = ( F ` -u b ) ) |
193 |
45
|
negeqd |
|- ( x = b -> -u ( F ` x ) = -u ( F ` b ) ) |
194 |
192 193
|
eqeq12d |
|- ( x = b -> ( ( F ` -u x ) = -u ( F ` x ) <-> ( F ` -u b ) = -u ( F ` b ) ) ) |
195 |
44 194
|
imbi12d |
|- ( x = b -> ( ( ( ph /\ x e. ZZ ) -> ( F ` -u x ) = -u ( F ` x ) ) <-> ( ( ph /\ b e. ZZ ) -> ( F ` -u b ) = -u ( F ` b ) ) ) ) |
196 |
195 2
|
chvarvv |
|- ( ( ph /\ b e. ZZ ) -> ( F ` -u b ) = -u ( F ` b ) ) |
197 |
196
|
adantrl |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( F ` -u b ) = -u ( F ` b ) ) |
198 |
197
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( F ` -u b ) = -u ( F ` b ) ) |
199 |
125
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( F ` -u a ) = -u ( F ` a ) ) |
200 |
198 199
|
breq12d |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( ( F ` -u b ) < ( F ` -u a ) <-> -u ( F ` b ) < -u ( F ` a ) ) ) |
201 |
190 200
|
sylibd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( -u b < -u a -> -u ( F ` b ) < -u ( F ` a ) ) ) |
202 |
|
zre |
|- ( a e. ZZ -> a e. RR ) |
203 |
202
|
ad2antrl |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> a e. RR ) |
204 |
203
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> a e. RR ) |
205 |
154
|
ad2antlr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> b e. RR ) |
206 |
204 205
|
ltnegd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( a < b <-> -u b < -u a ) ) |
207 |
40
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( F ` a ) e. RR ) |
208 |
49
|
adantr |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( F ` b ) e. RR ) |
209 |
207 208
|
ltnegd |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( ( F ` a ) < ( F ` b ) <-> -u ( F ` b ) < -u ( F ` a ) ) ) |
210 |
201 206 209
|
3imtr4d |
|- ( ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) /\ ( -u a e. NN0 /\ -u b e. NN0 ) ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) |
211 |
210
|
ex |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( -u a e. NN0 /\ -u b e. NN0 ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
212 |
39 151 174 211
|
ccased |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( ( ( a e. NN \/ -u a e. NN0 ) /\ ( b e. NN \/ -u b e. NN0 ) ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) ) |
213 |
19 212
|
mpd |
|- ( ( ph /\ ( a e. ZZ /\ b e. ZZ ) ) -> ( a < b -> ( F ` a ) < ( F ` b ) ) ) |
214 |
4 5 6 7 13 213
|
ltord1 |
|- ( ( ph /\ ( A e. ZZ /\ B e. ZZ ) ) -> ( A < B <-> ( F ` A ) < ( F ` B ) ) ) |
215 |
214
|
3impb |
|- ( ( ph /\ A e. ZZ /\ B e. ZZ ) -> ( A < B <-> ( F ` A ) < ( F ` B ) ) ) |