Step |
Hyp |
Ref |
Expression |
1 |
|
monotuz.1 |
|- ( ( ph /\ y e. H ) -> F < G ) |
2 |
|
monotuz.2 |
|- ( ( ph /\ x e. H ) -> C e. RR ) |
3 |
|
monotuz.3 |
|- H = ( ZZ>= ` I ) |
4 |
|
monotuz.4 |
|- ( x = ( y + 1 ) -> C = G ) |
5 |
|
monotuz.5 |
|- ( x = y -> C = F ) |
6 |
|
monotuz.6 |
|- ( x = A -> C = D ) |
7 |
|
monotuz.7 |
|- ( x = B -> C = E ) |
8 |
|
csbeq1 |
|- ( a = b -> [_ a / x ]_ C = [_ b / x ]_ C ) |
9 |
|
csbeq1 |
|- ( a = A -> [_ a / x ]_ C = [_ A / x ]_ C ) |
10 |
|
csbeq1 |
|- ( a = B -> [_ a / x ]_ C = [_ B / x ]_ C ) |
11 |
|
uzssz |
|- ( ZZ>= ` I ) C_ ZZ |
12 |
|
zssre |
|- ZZ C_ RR |
13 |
11 12
|
sstri |
|- ( ZZ>= ` I ) C_ RR |
14 |
3 13
|
eqsstri |
|- H C_ RR |
15 |
|
nfv |
|- F/ x ( ph /\ a e. H ) |
16 |
|
nfcsb1v |
|- F/_ x [_ a / x ]_ C |
17 |
16
|
nfel1 |
|- F/ x [_ a / x ]_ C e. RR |
18 |
15 17
|
nfim |
|- F/ x ( ( ph /\ a e. H ) -> [_ a / x ]_ C e. RR ) |
19 |
|
eleq1 |
|- ( x = a -> ( x e. H <-> a e. H ) ) |
20 |
19
|
anbi2d |
|- ( x = a -> ( ( ph /\ x e. H ) <-> ( ph /\ a e. H ) ) ) |
21 |
|
csbeq1a |
|- ( x = a -> C = [_ a / x ]_ C ) |
22 |
21
|
eleq1d |
|- ( x = a -> ( C e. RR <-> [_ a / x ]_ C e. RR ) ) |
23 |
20 22
|
imbi12d |
|- ( x = a -> ( ( ( ph /\ x e. H ) -> C e. RR ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C e. RR ) ) ) |
24 |
18 23 2
|
chvarfv |
|- ( ( ph /\ a e. H ) -> [_ a / x ]_ C e. RR ) |
25 |
|
simpl |
|- ( ( ( ph /\ a e. H ) /\ a < b ) -> ( ph /\ a e. H ) ) |
26 |
25
|
adantlrr |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> ( ph /\ a e. H ) ) |
27 |
3 11
|
eqsstri |
|- H C_ ZZ |
28 |
|
simplrl |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> a e. H ) |
29 |
27 28
|
sselid |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> a e. ZZ ) |
30 |
|
simplrr |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> b e. H ) |
31 |
27 30
|
sselid |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> b e. ZZ ) |
32 |
|
simpr |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> a < b ) |
33 |
|
csbeq1 |
|- ( c = ( a + 1 ) -> [_ c / x ]_ C = [_ ( a + 1 ) / x ]_ C ) |
34 |
33
|
breq2d |
|- ( c = ( a + 1 ) -> ( [_ a / x ]_ C < [_ c / x ]_ C <-> [_ a / x ]_ C < [_ ( a + 1 ) / x ]_ C ) ) |
35 |
34
|
imbi2d |
|- ( c = ( a + 1 ) -> ( ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ c / x ]_ C ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ ( a + 1 ) / x ]_ C ) ) ) |
36 |
|
csbeq1 |
|- ( c = d -> [_ c / x ]_ C = [_ d / x ]_ C ) |
37 |
36
|
breq2d |
|- ( c = d -> ( [_ a / x ]_ C < [_ c / x ]_ C <-> [_ a / x ]_ C < [_ d / x ]_ C ) ) |
38 |
37
|
imbi2d |
|- ( c = d -> ( ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ c / x ]_ C ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ d / x ]_ C ) ) ) |
39 |
|
csbeq1 |
|- ( c = ( d + 1 ) -> [_ c / x ]_ C = [_ ( d + 1 ) / x ]_ C ) |
40 |
39
|
breq2d |
|- ( c = ( d + 1 ) -> ( [_ a / x ]_ C < [_ c / x ]_ C <-> [_ a / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) |
41 |
40
|
imbi2d |
|- ( c = ( d + 1 ) -> ( ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ c / x ]_ C ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) ) |
42 |
|
csbeq1 |
|- ( c = b -> [_ c / x ]_ C = [_ b / x ]_ C ) |
43 |
42
|
breq2d |
|- ( c = b -> ( [_ a / x ]_ C < [_ c / x ]_ C <-> [_ a / x ]_ C < [_ b / x ]_ C ) ) |
44 |
43
|
imbi2d |
|- ( c = b -> ( ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ c / x ]_ C ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ b / x ]_ C ) ) ) |
45 |
|
eleq1 |
|- ( y = a -> ( y e. H <-> a e. H ) ) |
46 |
45
|
anbi2d |
|- ( y = a -> ( ( ph /\ y e. H ) <-> ( ph /\ a e. H ) ) ) |
47 |
|
vex |
|- y e. _V |
48 |
47 5
|
csbie |
|- [_ y / x ]_ C = F |
49 |
|
csbeq1 |
|- ( y = a -> [_ y / x ]_ C = [_ a / x ]_ C ) |
50 |
48 49
|
eqtr3id |
|- ( y = a -> F = [_ a / x ]_ C ) |
51 |
|
ovex |
|- ( y + 1 ) e. _V |
52 |
51 4
|
csbie |
|- [_ ( y + 1 ) / x ]_ C = G |
53 |
|
oveq1 |
|- ( y = a -> ( y + 1 ) = ( a + 1 ) ) |
54 |
53
|
csbeq1d |
|- ( y = a -> [_ ( y + 1 ) / x ]_ C = [_ ( a + 1 ) / x ]_ C ) |
55 |
52 54
|
eqtr3id |
|- ( y = a -> G = [_ ( a + 1 ) / x ]_ C ) |
56 |
50 55
|
breq12d |
|- ( y = a -> ( F < G <-> [_ a / x ]_ C < [_ ( a + 1 ) / x ]_ C ) ) |
57 |
46 56
|
imbi12d |
|- ( y = a -> ( ( ( ph /\ y e. H ) -> F < G ) <-> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ ( a + 1 ) / x ]_ C ) ) ) |
58 |
57 1
|
vtoclg |
|- ( a e. ZZ -> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ ( a + 1 ) / x ]_ C ) ) |
59 |
24
|
3ad2ant2 |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ a / x ]_ C e. RR ) |
60 |
|
simp2l |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> ph ) |
61 |
|
zre |
|- ( a e. ZZ -> a e. RR ) |
62 |
61
|
3ad2ant1 |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> a e. RR ) |
63 |
|
zre |
|- ( d e. ZZ -> d e. RR ) |
64 |
63
|
3ad2ant2 |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> d e. RR ) |
65 |
|
simp3 |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> a < d ) |
66 |
62 64 65
|
ltled |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> a <_ d ) |
67 |
66
|
3ad2ant1 |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> a <_ d ) |
68 |
|
simp11 |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> a e. ZZ ) |
69 |
|
simp12 |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> d e. ZZ ) |
70 |
|
eluz |
|- ( ( a e. ZZ /\ d e. ZZ ) -> ( d e. ( ZZ>= ` a ) <-> a <_ d ) ) |
71 |
68 69 70
|
syl2anc |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> ( d e. ( ZZ>= ` a ) <-> a <_ d ) ) |
72 |
67 71
|
mpbird |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> d e. ( ZZ>= ` a ) ) |
73 |
|
simp2r |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> a e. H ) |
74 |
73 3
|
eleqtrdi |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> a e. ( ZZ>= ` I ) ) |
75 |
|
uztrn |
|- ( ( d e. ( ZZ>= ` a ) /\ a e. ( ZZ>= ` I ) ) -> d e. ( ZZ>= ` I ) ) |
76 |
72 74 75
|
syl2anc |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> d e. ( ZZ>= ` I ) ) |
77 |
76 3
|
eleqtrrdi |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> d e. H ) |
78 |
|
nfv |
|- F/ x ( ph /\ d e. H ) |
79 |
|
nfcsb1v |
|- F/_ x [_ d / x ]_ C |
80 |
79
|
nfel1 |
|- F/ x [_ d / x ]_ C e. RR |
81 |
78 80
|
nfim |
|- F/ x ( ( ph /\ d e. H ) -> [_ d / x ]_ C e. RR ) |
82 |
|
eleq1 |
|- ( x = d -> ( x e. H <-> d e. H ) ) |
83 |
82
|
anbi2d |
|- ( x = d -> ( ( ph /\ x e. H ) <-> ( ph /\ d e. H ) ) ) |
84 |
|
csbeq1a |
|- ( x = d -> C = [_ d / x ]_ C ) |
85 |
84
|
eleq1d |
|- ( x = d -> ( C e. RR <-> [_ d / x ]_ C e. RR ) ) |
86 |
83 85
|
imbi12d |
|- ( x = d -> ( ( ( ph /\ x e. H ) -> C e. RR ) <-> ( ( ph /\ d e. H ) -> [_ d / x ]_ C e. RR ) ) ) |
87 |
81 86 2
|
chvarfv |
|- ( ( ph /\ d e. H ) -> [_ d / x ]_ C e. RR ) |
88 |
60 77 87
|
syl2anc |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ d / x ]_ C e. RR ) |
89 |
|
peano2uz |
|- ( d e. ( ZZ>= ` I ) -> ( d + 1 ) e. ( ZZ>= ` I ) ) |
90 |
76 89
|
syl |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> ( d + 1 ) e. ( ZZ>= ` I ) ) |
91 |
90 3
|
eleqtrrdi |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> ( d + 1 ) e. H ) |
92 |
|
nfv |
|- F/ x ( ph /\ ( d + 1 ) e. H ) |
93 |
|
nfcsb1v |
|- F/_ x [_ ( d + 1 ) / x ]_ C |
94 |
93
|
nfel1 |
|- F/ x [_ ( d + 1 ) / x ]_ C e. RR |
95 |
92 94
|
nfim |
|- F/ x ( ( ph /\ ( d + 1 ) e. H ) -> [_ ( d + 1 ) / x ]_ C e. RR ) |
96 |
|
ovex |
|- ( d + 1 ) e. _V |
97 |
|
eleq1 |
|- ( x = ( d + 1 ) -> ( x e. H <-> ( d + 1 ) e. H ) ) |
98 |
97
|
anbi2d |
|- ( x = ( d + 1 ) -> ( ( ph /\ x e. H ) <-> ( ph /\ ( d + 1 ) e. H ) ) ) |
99 |
|
csbeq1a |
|- ( x = ( d + 1 ) -> C = [_ ( d + 1 ) / x ]_ C ) |
100 |
99
|
eleq1d |
|- ( x = ( d + 1 ) -> ( C e. RR <-> [_ ( d + 1 ) / x ]_ C e. RR ) ) |
101 |
98 100
|
imbi12d |
|- ( x = ( d + 1 ) -> ( ( ( ph /\ x e. H ) -> C e. RR ) <-> ( ( ph /\ ( d + 1 ) e. H ) -> [_ ( d + 1 ) / x ]_ C e. RR ) ) ) |
102 |
95 96 101 2
|
vtoclf |
|- ( ( ph /\ ( d + 1 ) e. H ) -> [_ ( d + 1 ) / x ]_ C e. RR ) |
103 |
60 91 102
|
syl2anc |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ ( d + 1 ) / x ]_ C e. RR ) |
104 |
|
simp3 |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ a / x ]_ C < [_ d / x ]_ C ) |
105 |
|
nfv |
|- F/ y ( ( ph /\ d e. H ) -> [_ d / x ]_ C < [_ ( d + 1 ) / x ]_ C ) |
106 |
|
eleq1 |
|- ( y = d -> ( y e. H <-> d e. H ) ) |
107 |
106
|
anbi2d |
|- ( y = d -> ( ( ph /\ y e. H ) <-> ( ph /\ d e. H ) ) ) |
108 |
|
csbeq1 |
|- ( y = d -> [_ y / x ]_ C = [_ d / x ]_ C ) |
109 |
48 108
|
eqtr3id |
|- ( y = d -> F = [_ d / x ]_ C ) |
110 |
|
oveq1 |
|- ( y = d -> ( y + 1 ) = ( d + 1 ) ) |
111 |
110
|
csbeq1d |
|- ( y = d -> [_ ( y + 1 ) / x ]_ C = [_ ( d + 1 ) / x ]_ C ) |
112 |
52 111
|
eqtr3id |
|- ( y = d -> G = [_ ( d + 1 ) / x ]_ C ) |
113 |
109 112
|
breq12d |
|- ( y = d -> ( F < G <-> [_ d / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) |
114 |
107 113
|
imbi12d |
|- ( y = d -> ( ( ( ph /\ y e. H ) -> F < G ) <-> ( ( ph /\ d e. H ) -> [_ d / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) ) |
115 |
105 114 1
|
chvarfv |
|- ( ( ph /\ d e. H ) -> [_ d / x ]_ C < [_ ( d + 1 ) / x ]_ C ) |
116 |
60 77 115
|
syl2anc |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ d / x ]_ C < [_ ( d + 1 ) / x ]_ C ) |
117 |
59 88 103 104 116
|
lttrd |
|- ( ( ( a e. ZZ /\ d e. ZZ /\ a < d ) /\ ( ph /\ a e. H ) /\ [_ a / x ]_ C < [_ d / x ]_ C ) -> [_ a / x ]_ C < [_ ( d + 1 ) / x ]_ C ) |
118 |
117
|
3exp |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> ( ( ph /\ a e. H ) -> ( [_ a / x ]_ C < [_ d / x ]_ C -> [_ a / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) ) |
119 |
118
|
a2d |
|- ( ( a e. ZZ /\ d e. ZZ /\ a < d ) -> ( ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ d / x ]_ C ) -> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ ( d + 1 ) / x ]_ C ) ) ) |
120 |
35 38 41 44 58 119
|
uzind2 |
|- ( ( a e. ZZ /\ b e. ZZ /\ a < b ) -> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ b / x ]_ C ) ) |
121 |
29 31 32 120
|
syl3anc |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> ( ( ph /\ a e. H ) -> [_ a / x ]_ C < [_ b / x ]_ C ) ) |
122 |
26 121
|
mpd |
|- ( ( ( ph /\ ( a e. H /\ b e. H ) ) /\ a < b ) -> [_ a / x ]_ C < [_ b / x ]_ C ) |
123 |
122
|
ex |
|- ( ( ph /\ ( a e. H /\ b e. H ) ) -> ( a < b -> [_ a / x ]_ C < [_ b / x ]_ C ) ) |
124 |
8 9 10 14 24 123
|
ltord1 |
|- ( ( ph /\ ( A e. H /\ B e. H ) ) -> ( A < B <-> [_ A / x ]_ C < [_ B / x ]_ C ) ) |
125 |
|
nfcvd |
|- ( A e. H -> F/_ x D ) |
126 |
125 6
|
csbiegf |
|- ( A e. H -> [_ A / x ]_ C = D ) |
127 |
|
nfcvd |
|- ( B e. H -> F/_ x E ) |
128 |
127 7
|
csbiegf |
|- ( B e. H -> [_ B / x ]_ C = E ) |
129 |
126 128
|
breqan12d |
|- ( ( A e. H /\ B e. H ) -> ( [_ A / x ]_ C < [_ B / x ]_ C <-> D < E ) ) |
130 |
129
|
adantl |
|- ( ( ph /\ ( A e. H /\ B e. H ) ) -> ( [_ A / x ]_ C < [_ B / x ]_ C <-> D < E ) ) |
131 |
124 130
|
bitrd |
|- ( ( ph /\ ( A e. H /\ B e. H ) ) -> ( A < B <-> D < E ) ) |