| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sectmon.b | 
							 |-  B = ( Base ` C )  | 
						
						
							| 2 | 
							
								
							 | 
							sectmon.m | 
							 |-  M = ( Mono ` C )  | 
						
						
							| 3 | 
							
								
							 | 
							sectmon.s | 
							 |-  S = ( Sect ` C )  | 
						
						
							| 4 | 
							
								
							 | 
							sectmon.c | 
							 |-  ( ph -> C e. Cat )  | 
						
						
							| 5 | 
							
								
							 | 
							sectmon.x | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 6 | 
							
								
							 | 
							sectmon.y | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 7 | 
							
								
							 | 
							monsect.n | 
							 |-  N = ( Inv ` C )  | 
						
						
							| 8 | 
							
								
							 | 
							monsect.1 | 
							 |-  ( ph -> F e. ( X M Y ) )  | 
						
						
							| 9 | 
							
								
							 | 
							monsect.2 | 
							 |-  ( ph -> G ( Y S X ) F )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Hom ` C ) = ( Hom ` C )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( comp ` C ) = ( comp ` C )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( Id ` C ) = ( Id ` C )  | 
						
						
							| 13 | 
							
								1 10 11 12 3 4 6 5
							 | 
							issect | 
							 |-  ( ph -> ( G ( Y S X ) F <-> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) ) )  | 
						
						
							| 14 | 
							
								9 13
							 | 
							mpbid | 
							 |-  ( ph -> ( G e. ( Y ( Hom ` C ) X ) /\ F e. ( X ( Hom ` C ) Y ) /\ ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							simp3d | 
							 |-  ( ph -> ( F ( <. Y , X >. ( comp ` C ) Y ) G ) = ( ( Id ` C ) ` Y ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) )  | 
						
						
							| 17 | 
							
								14
							 | 
							simp2d | 
							 |-  ( ph -> F e. ( X ( Hom ` C ) Y ) )  | 
						
						
							| 18 | 
							
								14
							 | 
							simp1d | 
							 |-  ( ph -> G e. ( Y ( Hom ` C ) X ) )  | 
						
						
							| 19 | 
							
								1 10 11 4 5 6 5 17 18 6 17
							 | 
							catass | 
							 |-  ( ph -> ( ( F ( <. Y , X >. ( comp ` C ) Y ) G ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) )  | 
						
						
							| 20 | 
							
								1 10 12 4 5 11 6 17
							 | 
							catlid | 
							 |-  ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = F )  | 
						
						
							| 21 | 
							
								1 10 12 4 5 11 6 17
							 | 
							catrid | 
							 |-  ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = F )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqtr4d | 
							 |-  ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) F ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) )  | 
						
						
							| 23 | 
							
								16 19 22
							 | 
							3eqtr3d | 
							 |-  ( ph -> ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) )  | 
						
						
							| 24 | 
							
								1 10 11 4 5 6 5 17 18
							 | 
							catcocl | 
							 |-  ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) e. ( X ( Hom ` C ) X ) )  | 
						
						
							| 25 | 
							
								1 10 12 4 5
							 | 
							catidcl | 
							 |-  ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) )  | 
						
						
							| 26 | 
							
								1 10 11 2 4 5 6 5 8 24 25
							 | 
							moni | 
							 |-  ( ph -> ( ( F ( <. X , X >. ( comp ` C ) Y ) ( G ( <. X , Y >. ( comp ` C ) X ) F ) ) = ( F ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) )  | 
						
						
							| 27 | 
							
								23 26
							 | 
							mpbid | 
							 |-  ( ph -> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) )  | 
						
						
							| 28 | 
							
								1 10 11 12 3 4 5 6 17 18
							 | 
							issect2 | 
							 |-  ( ph -> ( F ( X S Y ) G <-> ( G ( <. X , Y >. ( comp ` C ) X ) F ) = ( ( Id ` C ) ` X ) ) )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							mpbird | 
							 |-  ( ph -> F ( X S Y ) G )  | 
						
						
							| 30 | 
							
								1 7 4 5 6 3
							 | 
							isinv | 
							 |-  ( ph -> ( F ( X N Y ) G <-> ( F ( X S Y ) G /\ G ( Y S X ) F ) ) )  | 
						
						
							| 31 | 
							
								29 9 30
							 | 
							mpbir2and | 
							 |-  ( ph -> F ( X N Y ) G )  |