| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moop2.1 |  |-  B e. _V | 
						
							| 2 |  | eqtr2 |  |-  ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> <. B , x >. = <. [_ y / x ]_ B , y >. ) | 
						
							| 3 |  | vex |  |-  x e. _V | 
						
							| 4 | 1 3 | opth |  |-  ( <. B , x >. = <. [_ y / x ]_ B , y >. <-> ( B = [_ y / x ]_ B /\ x = y ) ) | 
						
							| 5 | 4 | simprbi |  |-  ( <. B , x >. = <. [_ y / x ]_ B , y >. -> x = y ) | 
						
							| 6 | 2 5 | syl |  |-  ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) | 
						
							| 7 | 6 | gen2 |  |-  A. x A. y ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) | 
						
							| 8 |  | nfcsb1v |  |-  F/_ x [_ y / x ]_ B | 
						
							| 9 |  | nfcv |  |-  F/_ x y | 
						
							| 10 | 8 9 | nfop |  |-  F/_ x <. [_ y / x ]_ B , y >. | 
						
							| 11 | 10 | nfeq2 |  |-  F/ x A = <. [_ y / x ]_ B , y >. | 
						
							| 12 |  | csbeq1a |  |-  ( x = y -> B = [_ y / x ]_ B ) | 
						
							| 13 |  | id |  |-  ( x = y -> x = y ) | 
						
							| 14 | 12 13 | opeq12d |  |-  ( x = y -> <. B , x >. = <. [_ y / x ]_ B , y >. ) | 
						
							| 15 | 14 | eqeq2d |  |-  ( x = y -> ( A = <. B , x >. <-> A = <. [_ y / x ]_ B , y >. ) ) | 
						
							| 16 | 11 15 | mo4f |  |-  ( E* x A = <. B , x >. <-> A. x A. y ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) ) | 
						
							| 17 | 7 16 | mpbir |  |-  E* x A = <. B , x >. |