Step |
Hyp |
Ref |
Expression |
1 |
|
moop2.1 |
|- B e. _V |
2 |
|
eqtr2 |
|- ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> <. B , x >. = <. [_ y / x ]_ B , y >. ) |
3 |
|
vex |
|- x e. _V |
4 |
1 3
|
opth |
|- ( <. B , x >. = <. [_ y / x ]_ B , y >. <-> ( B = [_ y / x ]_ B /\ x = y ) ) |
5 |
4
|
simprbi |
|- ( <. B , x >. = <. [_ y / x ]_ B , y >. -> x = y ) |
6 |
2 5
|
syl |
|- ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) |
7 |
6
|
gen2 |
|- A. x A. y ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) |
8 |
|
nfcsb1v |
|- F/_ x [_ y / x ]_ B |
9 |
|
nfcv |
|- F/_ x y |
10 |
8 9
|
nfop |
|- F/_ x <. [_ y / x ]_ B , y >. |
11 |
10
|
nfeq2 |
|- F/ x A = <. [_ y / x ]_ B , y >. |
12 |
|
csbeq1a |
|- ( x = y -> B = [_ y / x ]_ B ) |
13 |
|
id |
|- ( x = y -> x = y ) |
14 |
12 13
|
opeq12d |
|- ( x = y -> <. B , x >. = <. [_ y / x ]_ B , y >. ) |
15 |
14
|
eqeq2d |
|- ( x = y -> ( A = <. B , x >. <-> A = <. [_ y / x ]_ B , y >. ) ) |
16 |
11 15
|
mo4f |
|- ( E* x A = <. B , x >. <-> A. x A. y ( ( A = <. B , x >. /\ A = <. [_ y / x ]_ B , y >. ) -> x = y ) ) |
17 |
7 16
|
mpbir |
|- E* x A = <. B , x >. |