| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nfmo1 |  |-  F/ x E* x ph | 
						
							| 2 |  | nfe1 |  |-  F/ x E. x ( ph /\ ps ) | 
						
							| 3 | 1 2 | nfan |  |-  F/ x ( E* x ph /\ E. x ( ph /\ ps ) ) | 
						
							| 4 |  | mopick |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ps ) ) | 
						
							| 5 | 4 | ancld |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ph -> ( ph /\ ps ) ) ) | 
						
							| 6 | 5 | anim1d |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ( ph /\ ch ) -> ( ( ph /\ ps ) /\ ch ) ) ) | 
						
							| 7 |  | df-3an |  |-  ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) | 
						
							| 8 | 6 7 | imbitrrdi |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( ( ph /\ ch ) -> ( ph /\ ps /\ ch ) ) ) | 
						
							| 9 | 3 8 | eximd |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) ) -> ( E. x ( ph /\ ch ) -> E. x ( ph /\ ps /\ ch ) ) ) | 
						
							| 10 | 9 | 3impia |  |-  ( ( E* x ph /\ E. x ( ph /\ ps ) /\ E. x ( ph /\ ch ) ) -> E. x ( ph /\ ps /\ ch ) ) |