Metamath Proof Explorer


Theorem mopickr

Description: "At most one" picks a variable value, eliminating an existential quantifier. The proof begins with references *2.21 ( pm2.21 ) and *14.26 ( eupickbi ) from WhiteheadRussell p. 104 and p. 183. (Contributed by Peter Mazsa, 18-Nov-2024) (Proof modification is discouraged.)

Ref Expression
Assertion mopickr
|- ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) )

Proof

Step Hyp Ref Expression
1 exancom
 |-  ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) )
2 moeu2
 |-  ( E* x ps <-> ( -. E. x ps \/ E! x ps ) )
3 19.8a
 |-  ( ps -> E. x ps )
4 3 con3i
 |-  ( -. E. x ps -> -. ps )
5 pm2.21
 |-  ( -. ps -> ( ps -> ph ) )
6 4 5 syl
 |-  ( -. E. x ps -> ( ps -> ph ) )
7 6 a1d
 |-  ( -. E. x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) )
8 eupickbi
 |-  ( E! x ps -> ( E. x ( ps /\ ph ) <-> A. x ( ps -> ph ) ) )
9 sp
 |-  ( A. x ( ps -> ph ) -> ( ps -> ph ) )
10 8 9 biimtrdi
 |-  ( E! x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) )
11 7 10 jaoi
 |-  ( ( -. E. x ps \/ E! x ps ) -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) )
12 2 11 sylbi
 |-  ( E* x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) )
13 1 12 biimtrid
 |-  ( E* x ps -> ( E. x ( ph /\ ps ) -> ( ps -> ph ) ) )
14 13 imp
 |-  ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) )