Step |
Hyp |
Ref |
Expression |
1 |
|
exancom |
|- ( E. x ( ph /\ ps ) <-> E. x ( ps /\ ph ) ) |
2 |
|
moeu2 |
|- ( E* x ps <-> ( -. E. x ps \/ E! x ps ) ) |
3 |
|
19.8a |
|- ( ps -> E. x ps ) |
4 |
3
|
con3i |
|- ( -. E. x ps -> -. ps ) |
5 |
|
pm2.21 |
|- ( -. ps -> ( ps -> ph ) ) |
6 |
4 5
|
syl |
|- ( -. E. x ps -> ( ps -> ph ) ) |
7 |
6
|
a1d |
|- ( -. E. x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
8 |
|
eupickbi |
|- ( E! x ps -> ( E. x ( ps /\ ph ) <-> A. x ( ps -> ph ) ) ) |
9 |
|
sp |
|- ( A. x ( ps -> ph ) -> ( ps -> ph ) ) |
10 |
8 9
|
biimtrdi |
|- ( E! x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
11 |
7 10
|
jaoi |
|- ( ( -. E. x ps \/ E! x ps ) -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
12 |
2 11
|
sylbi |
|- ( E* x ps -> ( E. x ( ps /\ ph ) -> ( ps -> ph ) ) ) |
13 |
1 12
|
biimtrid |
|- ( E* x ps -> ( E. x ( ph /\ ps ) -> ( ps -> ph ) ) ) |
14 |
13
|
imp |
|- ( ( E* x ps /\ E. x ( ph /\ ps ) ) -> ( ps -> ph ) ) |