Description: The empty set is an open set of a metric space. Part of Theorem T1 of Kreyszig p. 19. (Contributed by NM, 4-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) |
|
Assertion | mopn0 | |- ( D e. ( *Met ` X ) -> (/) e. J ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mopni.1 | |- J = ( MetOpen ` D ) |
|
2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
3 | 0opn | |- ( J e. Top -> (/) e. J ) |
|
4 | 2 3 | syl | |- ( D e. ( *Met ` X ) -> (/) e. J ) |