Metamath Proof Explorer


Theorem mopnfss

Description: The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopnval.1
|- J = ( MetOpen ` D )
Assertion mopnfss
|- ( D e. ( *Met ` X ) -> J C_ ~P X )

Proof

Step Hyp Ref Expression
1 mopnval.1
 |-  J = ( MetOpen ` D )
2 pwuni
 |-  J C_ ~P U. J
3 1 mopnuni
 |-  ( D e. ( *Met ` X ) -> X = U. J )
4 3 pweqd
 |-  ( D e. ( *Met ` X ) -> ~P X = ~P U. J )
5 2 4 sseqtrrid
 |-  ( D e. ( *Met ` X ) -> J C_ ~P X )