Metamath Proof Explorer


Theorem mopni

Description: An open set of a metric space includes a ball around each of its points. (Contributed by NM, 3-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Hypothesis mopni.1
|- J = ( MetOpen ` D )
Assertion mopni
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) )

Proof

Step Hyp Ref Expression
1 mopni.1
 |-  J = ( MetOpen ` D )
2 1 elmopn
 |-  ( D e. ( *Met ` X ) -> ( A e. J <-> ( A C_ X /\ A. y e. A E. x e. ran ( ball ` D ) ( y e. x /\ x C_ A ) ) ) )
3 2 simplbda
 |-  ( ( D e. ( *Met ` X ) /\ A e. J ) -> A. y e. A E. x e. ran ( ball ` D ) ( y e. x /\ x C_ A ) )
4 eleq1
 |-  ( y = P -> ( y e. x <-> P e. x ) )
5 4 anbi1d
 |-  ( y = P -> ( ( y e. x /\ x C_ A ) <-> ( P e. x /\ x C_ A ) ) )
6 5 rexbidv
 |-  ( y = P -> ( E. x e. ran ( ball ` D ) ( y e. x /\ x C_ A ) <-> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) )
7 6 rspccv
 |-  ( A. y e. A E. x e. ran ( ball ` D ) ( y e. x /\ x C_ A ) -> ( P e. A -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) )
8 3 7 syl
 |-  ( ( D e. ( *Met ` X ) /\ A e. J ) -> ( P e. A -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) ) )
9 8 3impia
 |-  ( ( D e. ( *Met ` X ) /\ A e. J /\ P e. A ) -> E. x e. ran ( ball ` D ) ( P e. x /\ x C_ A ) )