Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mopni.1 | |- J = ( MetOpen ` D ) | |
| Assertion | mopnin | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mopni.1 | |- J = ( MetOpen ` D ) | |
| 2 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) | 
| 3 | inopn | |- ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) | |
| 4 | 2 3 | syl3an1 | |- ( ( D e. ( *Met ` X ) /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J ) |