Metamath Proof Explorer


Theorem mopnin

Description: The intersection of two open sets of a metric space is open. (Contributed by NM, 4-Sep-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Hypothesis mopni.1
|- J = ( MetOpen ` D )
Assertion mopnin
|- ( ( D e. ( *Met ` X ) /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J )

Proof

Step Hyp Ref Expression
1 mopni.1
 |-  J = ( MetOpen ` D )
2 1 mopntop
 |-  ( D e. ( *Met ` X ) -> J e. Top )
3 inopn
 |-  ( ( J e. Top /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J )
4 2 3 syl3an1
 |-  ( ( D e. ( *Met ` X ) /\ A e. J /\ B e. J ) -> ( A i^i B ) e. J )